联邦学习实战

该文演示了如何利用pySyft库在Python中进行联邦学习的FedAVG算法。通过创建虚拟工作机模拟分布式环境,对数据进行分发,然后在每个客户端上独立训练模型,最后在服务器端聚合模型参数,实现了在保护数据隐私的同时进行模型优化。
摘要由CSDN通过智能技术生成

使用pySyft进行一次简单的联邦平均FedAVG


import torch
from torch import nn
from torch import optim
import syft as sy

# 扩展pytorch功能使其满足联邦学习训练
hook = sy.TorchHook(torch)
# 建立工作机和安全工作机,工作机作为客户端,用来训练模型
# 安全工作机作为服务器,用于数据的聚合和交流
Li = sy.VirtualWorker(hook, id='li')
Zhang = sy.VirtualWorker(hook, id='zhang')
secure_worker = sy.VirtualWorker(hook, id='secure_worker')
data = torch.tensor([[0, 0], [0, 1], [1, 0], [1, 1.]], requires_grad=True)
target = torch.tensor([[0], [0], [0], [1.]], requires_grad=True)
dataLi = data[0:2].send(Li)
targetLi = target[0:2].send(Li)
dataZhang = data[2:].send(Zhang)
targetZhang = target[2:].send(Zhang)
# 建立模型
model = nn.Linear(2, 1)


# 训练函数
def train():
    # 设置迭代次数
    interations = 20
    workerInters = 5
    for inter in range(interations):
        # 将服务器上全局模型发给两个参与方
        LiModel = model.copy().send(Li)
        ZhangModel = model.copy().send(Zhang)
        liOpt = optim.SGD(params=LiModel.parameters(), lr=0.1)
        ZhangOpt = optim.SGD(params=ZhangModel.parameters(), lr=0.1)
        for wi in range(workerInters):
            # li训练一次
            # 消除之前的梯度
            liOpt.zero_grad()
            # 预测
            liPre = LiModel(dataLi)
            # 计算损失
            liLoss = ((liPre - targetLi) ** 2).sum()
            # 回传损失
            liLoss.backward()
            # 更新参数
            liOpt.step()
            liLoss = liLoss.get().data
            # Zhang训练一次
            ZhangOpt.zero_grad()
            ZhangPre = ZhangModel(dataZhang)
            ZhangLoss = ((ZhangPre - targetZhang) ** 2).sum()
            ZhangLoss.backward()
            ZhangOpt.step()
            ZhangLoss = ZhangLoss.get().data

        # 将更新的局部模型发送给安全工作机
        LiModel.move(secure_worker)
        ZhangModel.move(secure_worker)

        # 模型平均
        with torch.no_grad():
            model.weight.set_(((ZhangModel.weight.data + LiModel.weight.data) / 2).get())
            model.bias.set_(((ZhangModel.bias.data + LiModel.bias.data) / 2).get())
            print('第' + str(inter+1) + '轮')
            print('Li: ' + str(liLoss) + '    zhang: ' + str(ZhangLoss))
            pass


    pass


# 开始训练
train()
# 用全局模型预测训练结果
preSecure = model(data)
loss = ((preSecure-target)**2).sum()
print(target)
print(preSecure)
print(loss.data)

运行结果:

 第1轮
Li: tensor(6.9580e-05)    zhang: tensor(0.2173)
第2轮
Li: tensor(0.0061)    zhang: tensor(0.1492)
第3轮
Li: tensor(0.0168)    zhang: tensor(0.1112)
第4轮
Li: tensor(0.0268)    zhang: tensor(0.0893)
第5轮
Li: tensor(0.0347)    zhang: tensor(0.0762)
第6轮
Li: tensor(0.0406)    zhang: tensor(0.0681)
第7轮
Li: tensor(0.0448)    zhang: tensor(0.0631)
第8轮
Li: tensor(0.0477)    zhang: tensor(0.0599)
第9轮
Li: tensor(0.0498)    zhang: tensor(0.0579)
第10轮
Li: tensor(0.0512)    zhang: tensor(0.0566)
第11轮
Li: tensor(0.0522)    zhang: tensor(0.0557)
第12轮
Li: tensor(0.0529)    zhang: tensor(0.0552)
第13轮
Li: tensor(0.0534)    zhang: tensor(0.0548)
第14轮
Li: tensor(0.0537)    zhang: tensor(0.0546)
第15轮
Li: tensor(0.0540)    zhang: tensor(0.0544)
第16轮
Li: tensor(0.0542)    zhang: tensor(0.0544)
第17轮
Li: tensor(0.0543)    zhang: tensor(0.0543)
第18轮
Li: tensor(0.0545)    zhang: tensor(0.0543)
第19轮
Li: tensor(0.0546)    zhang: tensor(0.0542)
第20轮
Li: tensor(0.0546)    zhang: tensor(0.0542)
tensor([[0.],
        [0.],
        [0.],
        [1.]], requires_grad=True)
tensor([[-0.1793],
        [ 0.3207],
        [ 0.1649],
        [ 0.6649]], grad_fn=<AddmmBackward>)
tensor(0.2745)

Process finished with exit code 0

参考文献

  • 王健宗,李泽远,何安珣. 《深入浅出联邦学习:原理与实践》. 机械工业出版社. 2021年5月
差分隐私联邦学习实战是将差分隐私技术应用于联邦学习环境中,以保护参与方的隐私。差分隐私不仅考虑到数据层面的隐私安全,还需要考虑到用户层面的安全问题[^2]。 在差分隐私联邦学习实战中,可以采用同态加密和混合加密机制来保护数据的隐私。同态加密可以在不暴露原始数据的情况下进行计算,而混合加密机制可以在保护数据隐私的同时实现联邦学习的模型训练[^1]。 通过使用差分隐私技术,参与方可以在本地对其数据进行加密和噪音添加,然后将加密的数据发送给中央服务器进行模型训练。在模型训练过程中,中央服务器可以通过聚合加密数据来计算全局模型,并将更新后的模型参数发送回参与方。这样,参与方的原始数据得到了保护,同时实现了联邦学习的模型训练。 差分隐私联邦学习实战的具体步骤包括: 1. 数据预处理:参与方对本地数据进行预处理,包括数据清洗、特征选择等。 2. 数据加密和噪音添加:参与方使用同态加密和差分隐私技术对数据进行加密,并添加噪音以保护隐私。 3. 加密数据传输:参与方将加密的数据传输给中央服务器,确保数据的安全传输。 4. 模型训练:中央服务器使用加密的数据进行模型训练,通过聚合加密数据计算全局模型。 5. 模型更新:中央服务器将更新后的模型参数发送回参与方,参与方使用解密技术获取更新后的模型参数。 6. 模型评估:参与方对更新后的模型进行评估,以验证模型的性能。 通过差分隐私联邦学习实战,可以在保护数据隐私的同时实现联邦学习的模型训练,为参与方提供了更高的隐私保护和数据安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值