
- 传感器信息读取。在视觉slam中主要为相机图像信息的读取和预处理。如果在机器人中,还可能有码盘、惯性传感器等信息的读取和同步
- 视觉里程计(visua odometry,VO)视觉里程计任务是估算相邻图像间相机的运动以及局部地图的样子。VO又称为前端 front end。
- 后端优化(optimization)后端接受不同时刻视觉里程计测量的相机位置,以及后环检测的信息,对他们进行优化,得到全局一致的轨迹和地图。由于接在VO之后,又称为后端(back end)。
- 回环检测(loop closing)回环检测判断机器人是否曾经到达过先前的位置。如果检测到回环,他会把信息提供给后端进行处理。
- 建图(mapping)他根据估计的轨迹,建立与任务要求对应的地图。
VO可以同传统意义上的里程计类比学习。VO通过比较、叠加两个时刻的图像,估计运动轨迹。但这种叠加会累积误差,产生漂移,这样估计出来的运动轨迹可能不符合要求(比如少于一圈或多于一圈)。(这时可以通过回环检测,检测出回归位置后,在后端进行调整,矫正整个轨迹的形状。)
前端和计算机视觉研究领域更为相关,比如图像的特征提取与匹配。后端则主要是滤波与非线性优化算法。
后端优化主要处理SLAM过程中噪声的问题,即如何从带有噪声的数据

本文介绍了SLAM中的关键概念,包括传感器信息读取,视觉里程计(VO)作为前端,后端优化处理噪声,回环检测用于消除漂移,以及建图的不同形式。前端侧重于图像处理,后端关注滤波与优化,回环检测通过图像相似性检查实现。地图构建可为度量或拓扑类型,服务于不同SLAM应用需求。
最低0.47元/天 解锁文章
6883

被折叠的 条评论
为什么被折叠?



