5.3.0Spark_SQL入门

Spark_SQL入门

一、 Spark SQL概述

        Spark SQLSpark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。

二、 Spark SQL 作用

       Hive是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!

三、 Spark SQL特点

        1. 易于整合

 

    整合HiveSql

        2. 统一的数据访问方式

 

            Sql语法相同

        3. 兼容Hive

 

        4. 标准的数据连接

 

        JDBC连接数据库

四、 DataFrame

        1. 定义

   与RDD类似,DataFrame也是一个分布式数据容器。然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。同时,与Hive类似,DataFrame也支持嵌套数据类型(structarraymap。从API易用性的角度上 看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。由于与RPandasDataFrame类似,Spark DataFrame很好地继承了传统单机数据分析的开发体验。

 

 

        2. 创建DataFrame

    在Spark SQLSQLContext是创建DataFrame和执行SQL的入口。Spark2.0Spark session合并了SQLContextHiveContext。所有使用内置spark创建

 

            1) 在本地创建一个文件,有三列,分别是idnameage,用空格分隔,然后上传到hdfs

 

 

 

 

 

            2) spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割

val lineRDD =  sc.textFile("hdfs://master:9000/sparktest/input/sparksqlperson.txt").map(_.split(" "))

            3) 定义case class(相当于表的schema

case class Person(id:Int, name:String, age:Int)

 

            4) RDDcase class关联

val personRDD = lineRDD.map(x => Person(x(0).toInt , x(1), x(2).toInt))

            5) RDD转换成DataFrame

val personDF = personRDD.toDF

            6) DataFrame进行处理

personDF.show

 

        3. DataFrame常用操作

            1) DSL风格语法

//查看DataFrame中的内容
personDF.show

 

//查看DataFrame部分列中的内容
personDF.select(personDF.col("name")).show

 

personDF.select(col("name"), col("age")).show

 

personDF.select("name").show

 

//打印DataFrame的Schema信息
personDF.printSchema

 

//查询所有的name和age,并将age+1
personDF.select(col("id"), col("name"), col("age") + 1).show

 

personDF.select(personDF("id"),personDF("name"), personDF("age") + 1).show

//过滤age大于等于18的
personDF.filter(col("age") >= 18).show


//按年龄进行分组并统计相同年龄的人数
personDF.groupBy("age").count().show()

 

            2) SQL风格语法

     如果想使用SQL风格的语法,需要DataFrame注册成表

personDF.registerTempTable("t_person")

 

            spark2.1.1内置SparkSession 直接用于sql查询

//查询年龄最大的前两名
spark.sql("select * from t_person order by age desc limit 2").show

 

//显示表的Schema信息
spark.sql("desc t_person").show

 

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Simon_09010817/article/details/79968351
个人分类: Spark
上一篇5.2.0Spark计算模型RDD
下一篇5.3.1Spark_SQL项目编码(Scala)
想对作者说点什么? 我来说一句

opencv3编程入门pdf完整版(附源码)

2018年01月16日 88.05MB 下载

10小时入门大数据

2018年02月24日 308B 下载

没有更多推荐了,返回首页

关闭
关闭