决策树相关算法

本博文记录决策树相关算法原理,用来对付面试问题…

决策树

决策树信息熵:
e n t r o p y ( D ) = − ∑ i = 1 n P i l o g 2 P i entropy(D) = -\sum_{i=1}^n P_ilog_2 P_i entropy(D)=i=1nPilog2Pi
G a i n ( A ) = e n t r o p y ( D ) − e n t r o p y A ( D ) Gain(A) = entropy(D) - entropy_A(D) Gain(A)=entropy(D)entropyA(D)
最大化 G a i n ( A ) Gain(A) GainA

随机森林

多棵决策树,只不过训练集不同。每棵决策树从训练集中有放回地抽取N个样本来训练。最后投票决定分类结果。

Gradient Boosting Tree

还是多棵决策树,只不过后一个树的生成是基于前面树的学习结果生成的。

蚁群算法

随机搜索算法
ita为局部信息,即启发式因子(能见度)。初始时就定下来了。
tor为全局信息,即信息素量。每个迭代都会被更新。

以TSP为例,每次从r城市到s城市的概率为:
在这里插入图片描述当所有蚂蚁都走完各自的路经后,就更新tor:
用本次迭代蚂蚁走过的最优路径来计算的增量。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Site1997

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值