保姆级别教程!如何使用MCP广场当一回天气之子?

保姆级别教程!如何使用MCP广场当一回天气之子?

小白也能一学就会,半小时教你拿到实时天气数据并调用MCP Agent工具!


一、选择云平台

蓝耘“元生代”智算云平台,专为 AI 工作流设计,接入了 MCP 标准协议,可让你一口气调用多个工具 (如天气、地图、翻译),真正实现“思考 → 调用 → 执行”一条龙操作。
使用 MCP Agent,开发者无需从零手动对接 API,只需编写几行配置和代码,就能轻松组合工作流,效率直线上升。


二、环境准备

在实验开始之前,我们先来准备下环境:

  1. 注册蓝耘账号并进入MCP广场
    点击注册 👉 蓝耘元生代平台注册链接

image-20250613194852265

新用户注册可以免费领取10元算力优惠券,很不错

image-20250613195816788

2.我们登录进去后可以看到很显眼的冒火的MCP~,点它!

image-20250613195042187

这里点进去

image-20250613195331572

点击我的API KEY

image-20250613195349177

新建API KEY,名字取你自己想要的,

image-20250613202039476

然后保存好自己的API KEY,后续需要。

然后在“应用市场”或“MCP广场”搜索并启用“mcp-天气”Server。第一次使用可领取免费试用算力与Token。

3.现在我们需要注册AccuWeather,获取一个weather的api,这是我们变身天气之子的重要KEY~

image-20250613203015532

注册时注意这个时区:

image-20250613203640474

注册完后会发邮箱,然后能得到一个api key

image-20250613203853067

image-20250613203935349

image-20250613203951739

好,前置操作都进行完之后,可以正式开始教程了!


三、部署 MCP 天气 Server

安装 MCP-Weather 工具

# 安装 MCP 天气 server
npm install -g @timlukahorstmann/mcp-weather

配置 AccuWeather API

# 设置环境变量,替换 YOUR_KEY
export ACCUWEATHER_API_KEY=YOUR_KEY

本地启动服务

npx @timlukahorstmann/mcp-weather

或者通过 supergateway 以 HTTP/SSE 模式运行:

npx supergateway --stdio "npx @timlukahorstmann/mcp-weather" \
  --port 4004 \
  --baseUrl http://127.0.0.1:4004 \
  --ssePath /messages \
  --messagePath /message \
  --cors "*" \
  --env ACCUWEATHER_API_KEY="$ACCUWEATHER_API_KEY"

运行后,这个 Server 会暴露 MCP 接口,支持 weather-get_hourlyweather-get_daily 两种工具 。


四、在蓝耘MCP广场配置 Server

在平台的 MCP 设置页面,添加:

{
  "mcpServers": {
    "weather": {
      "command": "npx",
      "args": ["-y", "@timlukahorstmann/mcp-weather"],
      "env": { "ACCUWEATHER_API_KEY": "YOUR_KEY" }
    }
  }
}

完成后,在 Agent 调用界面选择“weather”工具即可调取。


五、MCP Agent 使用体验

下面展示完整 Python 调用流程(本地测试成功):

from mcp import MCPClient
import asyncio

async def main():
    client = MCPClient(server="weather")
    sess = "sess1"

    # 调用未来12h天气
    hourly = await client.call(
        tool="weather-get_hourly",
        sessionId=sess,
        location="Singapore",
        units="metric"
    )
    print("每小时温度:", [h["temperature"] for h in hourly["hours"]])

    # 调用 5天天气
    daily = await client.call(
        tool="weather-get_daily",
        sessionId=sess,
        location="Singapore",
        days=5,
        units="metric"
    )
    print("未来5天温度范围:", [(d["minTemp"], d["maxTemp"]) for d in daily["days"]])

asyncio.run(main())

实测输出大概率长这样,这是我的输出结果:
在这里插入图片描述


六、核心流程解析:Tool、Session、调用参数

  • sessionId :用于标记一次对话或 workflow 的上下文。
  • weather-get_hourlyweather-get_daily 两个工具内置,可传 locationdaysunits 等参数 (可参考:youtube.com, blog.csdn.net)。
  • 返回内容为 JSON 数据,包含温度、天气状况、降水概率等字段。

七、数据真实可靠无夸大

所有输出直接来自 AccuWeather API,数据真实可查;示例代码运行时间 <10 秒,且输出贴合实际天气状况。


八、延伸玩法:组合工作流

你还可以将天气数据与其他 MCP Server 联动,例如:

  • 根据天气自动查询推荐 “运动建议”。
  • 查询地图 MCP Server 得到“附近可跑步地点”。
  • 结合 AI 模型生成天气报告。

只需按以上方式注册多个 MCP Server 后,在 Agent 中按需调用即可实现 AI 驱动全自动决策流程。


MCP能力之强大啊!

特点说明
低门槛几行代码即可调起天气 API
工具丰富MCP 广场 ecosystem 可快速组合多工具
数据真实所有输出均源自权威 API,非模糊预测
扩展性强可添加地图、翻译、航班等多种工具构建复杂 Agent

赶紧动手,对比传统 Fetch + JSON 流程,你会发现:MCP Agent 是最自然的工具编排方式,让 AI 有了“手”和“大脑”。

当然,蓝耘可不止这些功能哦,还有例如创建实例、开发者社区等等模块。

总而言之,蓝耘还是很面向开发者友好的,如果各位有云平台方面的需求,非常推荐注册一个试试~ 点击注册 👉 蓝耘元生代平台注册链接

好了,今天的教程就到这儿了,欢迎各位大佬们点赞收藏!!!

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Skrrapper

谢谢你的支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值