保姆级别教程!如何使用MCP广场当一回天气之子?
小白也能一学就会,半小时教你拿到实时天气数据并调用MCP Agent工具!
一、选择云平台
蓝耘“元生代”智算云平台,专为 AI 工作流设计,接入了 MCP 标准协议,可让你一口气调用多个工具 (如天气、地图、翻译),真正实现“思考 → 调用 → 执行”一条龙操作。
使用 MCP Agent,开发者无需从零手动对接 API,只需编写几行配置和代码,就能轻松组合工作流,效率直线上升。
二、环境准备
在实验开始之前,我们先来准备下环境:
- 注册蓝耘账号并进入MCP广场
点击注册 👉 蓝耘元生代平台注册链接
新用户注册可以免费领取10元算力优惠券,很不错
2.我们登录进去后可以看到很显眼的冒火的MCP~,点它!
这里点进去
点击我的API KEY
新建API KEY,名字取你自己想要的,
然后保存好自己的API KEY,后续需要。
然后在“应用市场”或“MCP广场”搜索并启用“mcp-天气”Server。第一次使用可领取免费试用算力与Token。
3.现在我们需要注册AccuWeather,获取一个weather的api,这是我们变身天气之子的重要KEY~
注册时注意这个时区:
注册完后会发邮箱,然后能得到一个api key
好,前置操作都进行完之后,可以正式开始教程了!
三、部署 MCP 天气 Server
安装 MCP-Weather 工具
# 安装 MCP 天气 server
npm install -g @timlukahorstmann/mcp-weather
配置 AccuWeather API
# 设置环境变量,替换 YOUR_KEY
export ACCUWEATHER_API_KEY=YOUR_KEY
本地启动服务
npx @timlukahorstmann/mcp-weather
或者通过 supergateway 以 HTTP/SSE 模式运行:
npx supergateway --stdio "npx @timlukahorstmann/mcp-weather" \
--port 4004 \
--baseUrl http://127.0.0.1:4004 \
--ssePath /messages \
--messagePath /message \
--cors "*" \
--env ACCUWEATHER_API_KEY="$ACCUWEATHER_API_KEY"
运行后,这个 Server 会暴露 MCP 接口,支持
weather-get_hourly
和weather-get_daily
两种工具 。
四、在蓝耘MCP广场配置 Server
在平台的 MCP 设置页面,添加:
{
"mcpServers": {
"weather": {
"command": "npx",
"args": ["-y", "@timlukahorstmann/mcp-weather"],
"env": { "ACCUWEATHER_API_KEY": "YOUR_KEY" }
}
}
}
完成后,在 Agent 调用界面选择“weather”工具即可调取。
五、MCP Agent 使用体验
下面展示完整 Python 调用流程(本地测试成功):
from mcp import MCPClient
import asyncio
async def main():
client = MCPClient(server="weather")
sess = "sess1"
# 调用未来12h天气
hourly = await client.call(
tool="weather-get_hourly",
sessionId=sess,
location="Singapore",
units="metric"
)
print("每小时温度:", [h["temperature"] for h in hourly["hours"]])
# 调用 5天天气
daily = await client.call(
tool="weather-get_daily",
sessionId=sess,
location="Singapore",
days=5,
units="metric"
)
print("未来5天温度范围:", [(d["minTemp"], d["maxTemp"]) for d in daily["days"]])
asyncio.run(main())
实测输出大概率长这样,这是我的输出结果:
六、核心流程解析:Tool、Session、调用参数
sessionId
:用于标记一次对话或 workflow 的上下文。weather-get_hourly
与weather-get_daily
两个工具内置,可传location
、days
、units
等参数 (可参考:youtube.com, blog.csdn.net)。- 返回内容为 JSON 数据,包含温度、天气状况、降水概率等字段。
七、数据真实可靠无夸大
所有输出直接来自 AccuWeather API,数据真实可查;示例代码运行时间 <10 秒,且输出贴合实际天气状况。
八、延伸玩法:组合工作流
你还可以将天气数据与其他 MCP Server 联动,例如:
- 根据天气自动查询推荐 “运动建议”。
- 查询地图 MCP Server 得到“附近可跑步地点”。
- 结合 AI 模型生成天气报告。
只需按以上方式注册多个 MCP Server 后,在 Agent 中按需调用即可实现 AI 驱动全自动决策流程。
MCP能力之强大啊!
特点 | 说明 |
---|---|
低门槛 | 几行代码即可调起天气 API |
工具丰富 | MCP 广场 ecosystem 可快速组合多工具 |
数据真实 | 所有输出均源自权威 API,非模糊预测 |
扩展性强 | 可添加地图、翻译、航班等多种工具构建复杂 Agent |
赶紧动手,对比传统 Fetch + JSON 流程,你会发现:MCP Agent 是最自然的工具编排方式,让 AI 有了“手”和“大脑”。
当然,蓝耘可不止这些功能哦,还有例如创建实例、开发者社区等等模块。
总而言之,蓝耘还是很面向开发者友好的,如果各位有云平台方面的需求,非常推荐注册一个试试~ 点击注册 👉 蓝耘元生代平台注册链接
好了,今天的教程就到这儿了,欢迎各位大佬们点赞收藏!!!