Mariana: Tencent Deep Learning Platform and its Application学习

本文旨在阐述如何利用多GPU并行计算和数据并行策略来加速大规模AI模型的训练过程,提高计算效率。通过模型复制和参数分布,实现工作组间的高效数据并行和工作组内的模型并行,从而有效优化模型训练速度和资源利用。

目的:

1.提供大规模的计算能力,为了能够快速训练

2.能够训练大型的模型;

3.能够方便你使用各种模型,优化方法和调整参数。

三种Frameworks:

Multi-GPU, data parallelismL:

模型复制到多个GPU上,数据并行的传入GPU进行训练,每轮训练需要进行parameters collection和parameters distribution。

imageimage

Multi-GPU,modal and data parallelism

image

模型和数据都并行化处理,worker group间数据并行,worker group内模型并行。

CPU cluster:

image

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值