Spark中几种ShuffleWriter的区别你都知道吗?

本文详细介绍了Spark中三种ShuffleWriter:BypassMergeSortShuffleWriter、UnsafeShuffleWriter和SortShuffleWriter的实现细节与使用场景。BypassMergeSort适用于无聚合操作且分区数较少的情况,UnsafeShuffleWriter利用序列化进行排序,而SortShuffleWriter支持内存排序和溢写文件的全局排序。各具特色的ShuffleWriter满足了Spark在不同性能需求下的shuffle操作。
摘要由CSDN通过智能技术生成

一.前言

在Spark中有三种shuffle写,分别是BypassMergeSortShuffleWriter、UnsafeShuffleWriter、SortShuffleWriter。分别对应三种不同的shuffleHandle。

这三者和ShuffleHandle的对应关系如下:

  • UnsafeShuffleWriter:SerializedShuffleHandle
  • BypassMergeSortShuffleWriter:BypassMergeSortShuffleHandle,
  • SortShuffleWriter:BaseShuffleHandle

那么这些shuffle写内部的实现细节有何不同,在什么场景下使用什么样的shuffleWriter呢,接下来我们对着三种ShuffleWriter的实现细节做一个比较。

二.不同shuffleHandle的使用时机

不同shuffleWrite的使用其实是根据shuffleHandle来决定的,在构建shuffleDependence时都会构建shuffleHandle,在registerShuffle方法中,有着对shuffleHandle使用的一个条件约束,因此使用条件也有所不同。

1.对于BypassMergeSortShuffleHandle,

map端没有聚合操作,且分区必须小于200。

在许多使用场景下,有些算子会在map端先进行一次combine,减少数据传输,而BypassMergeSortShuffleHandle不支持这种操作,因为该handle对应的BypassMergeSortShuffleWriter是开辟和后续RDD分区数量一样数量的小文件,读取每条记录算出它的分区号,然后根据分区号判断应该追加到该文件中,此外这个过程也有缓冲区的概念,但一般这个缓冲区都不会特别大,默认为32k。这也是这种shuffle写不支持map端聚合的一个原因,因为聚合必然要在内存中储存一批数据,将相同key的数据做聚合,而这里是直接开辟多个I/O流,根据分区号往文件中追加数据。

而正因为要同时打开多个文件,所以后续RDD的分区数也不能太多,否则同时打开多个文件,产生多个IO,消耗的资源成本很高。

2.对于SerializedShuffleHandle

map端没有聚合操作,需要Se

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值