- 博客(111)
- 资源 (2)
- 收藏
- 关注
原创 多维图像去噪方法研究
因此,HS图像丰富的空间和光谱信息极大地提高了地球观测的感知能力,这使得HS RS技术在精准农业(例如监测农作物的生长和健康)等领域发挥着至关重要的作用,太空探索(例如,寻找其他行星上的生命迹象)、污染监测(例如,检测海洋漏油)和军事应用(例如,识别军事目标)。综合实验证明:(i)BM3D系列用于各种去噪任务的有效性和效率,(ii)与张量算法相比,简单的基于矩阵的算法可以产生类似的结果,以及(iii)用合成高斯噪声训练的几个DNN模型在现实世界的彩色图像和视频数据集上显示出最先进的性能。
2023-05-04 20:16:37
2350
1
转载 【2022综述】人工智能交通预测技术:最新发展与未来机遇【附思维导图】
论文标题:《Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities》作者:Maryam Shaygan, Collin Meese, Wanxin Li, Xiaoliang (George) Zhao, Mark Nejad期刊:Transportation Research Part C: Emerging Technologies
2023-04-18 15:00:23
3265
转载 ChatGPT进阶——如何辅助设计E-R图、流程图和时序图等
Mermaid 是一个基于 JavaScript 的图表绘制工具,通过解析类 Markdown 的文本语法来实现图表的创建和动态修改。Mermaid 诞生的主要目的是让文档的更新能够及时跟上开发进度。
2023-03-29 21:45:08
17936
原创 基于Transformer的交通预测模型部分汇总【附源代码】
交通预测一直是一个重要的问题,它涉及到交通运输系统的可靠性和效率。随着人工智能的发展,越来越多的研究者开始使用深度学习模型来解决这个问题。其中,基于Transformer的交通预测模型在近年来备受关注,因为它们具有优秀的建模能力和较好的预测准确性。
2023-03-14 17:56:22
10147
4
转载 ChatGPT与智能交通
ChatGPT全名为Chat Generative Pre-trained Transformer,是美国OpenAI研发的聊天机器人程序,于2022年11月30日发布。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文等任务。
2023-03-01 13:28:19
1426
原创 基于张量变换域低秩正则化的图像恢复方法
在高光谱图像的第三个模态上,又具有波段上的相关性(MRI、RGB图像都具有相似的性质)。这就使得图像的三阶张量表现出一定的低秩性,因而低秩约束被广泛应用于图像恢复。根据张量的低秩性约束与不同张量秩的定义,又有许多低秩张量补全算法用于图像恢复,比如基于Tucker秩的HaLRTC,基于管秩的TNN,基于TT秩的TMac-TT等。本文将介绍两种TRPCA(Tensor Robust Principal Component Analysis)相关的改进算法,旨在诱导出更低的张量秩。
2023-01-04 22:38:41
1617
转载 基于三维块匹配滤波的传统图像去噪中非局部自相似去噪算法—BM3D原理总结
BM3D技术总结,用于基础学习。项目网址:http://www.cs.tut.fi/~foi/GCF-BM3D/
2022-12-21 13:27:37
1608
1
转载 图结构学习最新综述:研究进展与未来展望
图结构学习的出发点:GNN 的成功可以归因于它们能够同时利用图结构和属性中固有的丰富信息,但所提供的图不可避免的不完整和噪声较大,这给将GNN应用于现实问题带来了巨大的挑战。从表示学习的角度来看,GNN通过递归聚合来自相邻节点的信息来计算节点嵌入,这种迭代机制具有级联效应——小的噪声将传播到社区,恶化许多其他表示的质量。上述问题激发了围绕图结构学习(GSL)的中心主题的大量研究,该主题的目标是联合学习一个优化的图结构及其相应的表示。
2022-12-14 17:41:30
1287
转载 GNN 推荐系统综述 - Graph Neural Networks in Recommender Systems: A Survey
本文是一篇推荐系统综述,介绍了Graph Neural Networks,Recommender System方面的相关内容
2022-12-01 16:41:21
1061
原创 图像增强方法概述
图像恢复是通过一些先验知识估计图像缺失像素值,是估计值对缺失值的逼近,图像增强则与之不同。图像增强是通过代数或者统计等方法,增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果。
2022-11-23 22:14:58
12239
转载 面向大规模神经网络的模型压缩和加速方法【方法介绍】【相关工作】
随着科学研究与生产实践相结合需求的与日俱增,模型压缩和加速成为当前的热门研究方向之一。本文旨在对一些常见的模型压缩和模型加速方法进行简单介绍(每小节末尾都整理了一些相关工作,感兴趣的小伙伴欢迎查阅)。这些方法可以减少模型中存在的冗余,将复杂模型转化成更轻量的模型。本文涉及方法的主要类别有:知识蒸馏、高效网络结构设计、条件计算、模型剪枝、参数共享、量化。
2022-10-31 19:31:48
410
转载 更通俗易懂的理解图卷积神经网络(GCN)
在这篇博文中会以一种通俗易懂的方式为大家详细地介绍目前使用广泛的图神经网络——图卷积网络(Graph Convolutional Networks, GCN)的相关知识。首先将带领大家直觉上感受其工作原理,然后再介绍更深层的数学原理。
2022-10-20 10:36:39
1171
1
原创 经典图像去噪算法概述
基于梯度先验去噪方法的重点是局部特征,而忽略图像的全局结构。上面问题可以由Y的奇异值分解解决,由于奇异值分解的能量压缩性质,信息的主要能量都集中在少数几个较大的奇异值上,而较小的奇异值对应于噪声子空间,将它们设置为零可以得到去噪后的低秩矩阵,问题的关键是如何确定阈值来区分信号与噪声,太大的阈值会使图像过于平滑从而模糊掉边缘及纹理,太小的阈值则难以达到去噪的效果。由噪声模型可以看出加性噪声和图像信号之间是相加的关系,不管有无图像信号的存在,噪声是客观存在的,因此可知图像信号和噪声信号之间是不相关的。
2022-10-12 19:42:17
9894
原创 基于张量分解的遥感图像恢复及常用高光谱遥感数据集
本文为初期学习总结,本篇文章总结了遥感高光谱图像研究背景、高光谱图像噪声的分类,介绍了基于张量的图像恢复方法及近年来对于张量分解的相关研究,总结了几个常用的图像评价指标,总结了高光谱遥感图像常用的数据集。
2022-09-26 20:19:39
5103
原创 交通系统速度预测综述:从车辆到交通【公共交通数据集】【开源模型整理】
本篇综述将交通系统中的速度预测按规模分为三类:交通速度预测(宏观)、车速预测(微观)和车道级速度预测(中观),探讨了速度预测在不同层次上的异同,以促进对速度预测的全面理解。
2022-09-21 11:41:45
4635
2
原创 《Modeling Long- and Short-Term Temporal Patterns with DeepNeural Networks》学习总结
本文提出了一种新的深度学习框架(LSTNet)用于多变量时间序列预测。通过结合卷积、循环神经网络以及自回归层的优势,显著改善了多个基准数据集上的时间序列预测的结果;通过深入分析和经验验证,LSTNet模型成功捕捉了数据中的短期和长期重复模式,并结合线性和非线性模型进行了稳健的预测。
2022-09-14 21:38:49
939
1
转载 卷积神经网络(CNN)详解
卷积神经网络(CNN)详解1. 卷积神经网络结构介绍如果用全连接神经网络处理大尺寸图像具有三个明显的缺点:(1)首先将图像展开为向量会丢失空间信息;(2)其次参数过多效率低下,训练困难;(3)同时大量的参数也很快会导致网络过拟合。而使用卷积神经网络可以很好地解决上面的三个问题。与常规神经网络不同,卷积神经网络的各层中的神经元是3维排列的:宽度、高度和深度。其中的宽度和高度是很好理解的,因为本身卷积就是一个二维模板,但是在卷积神经网络中的深度指的是激活数据体的第三个维度,而不是整个网络的深度,整个网络的深度指
2022-05-27 20:56:05
3653
转载 图嵌入 (Graph Embedding)
图嵌入 Random Walk Matrix Fractorization Meta Paths Deep Learning Others 开放资源 开源实现 论文列表和评测 图(Graph / Network)数据类型可以自然地表达物体和物体之间的联系,在我们的日常生活与工作中无处不在。例如:微信和新浪微博等构成了人与人之间的社交网络;互联网上成千上万个页面构成了网页链接网络;国家城市间的运输交通构成了物流网络。图片来源:The power of rel...
2022-05-18 21:12:18
5526
转载 时间序列模型分析
目录一个引言定义确定性时间序列分析方法概述确定性时间序列模型类型移动平均法简单移动平均法加权移动平均法趋势移动平均法指数平滑法一次指数平滑法1.预测模型编辑2.加权系数的选择编辑3.初始值的确定编辑二次指数平滑法编辑三次指数平滑法编辑指数平滑预测模型的评价一般自回归模型 AR(n)白噪声序列编辑移动平均模型 MA(m)编辑自回归移动平均模型编辑ARMA 模型的特性AR(1)系统的格林函数...
2022-05-13 09:56:29
3218
转载 目标检测之YOLO系列
1、yolo系列发展背景在 CV (计算机视觉)领域,目标检测任务是实际应用项目的第一步,主要包括:人脸识别、多目标检测、REID、客流统计等内容。yolov5是目标检测一个非常成熟、经典的模型,它自从提出以来,在工业、军事、科研方面有着广泛的应用。yolov1,v2,v3的作者是美国的Joseph Redmon,被人称为yolo之父,但是由于其反对将yolo用于军事和隐私窥探,2020年2月宣布停止更新yolo。后来,俄罗斯的Alexey大神更新了yolov4,不久之后,y...
2022-05-09 15:51:49
3155
转载 神经网络压缩方法总结
首先,为什么需要对神经网络模型进行压缩呢?我们在之前的课程中介绍过很多大型的深度学习模型,但当我们想要将这些大模型放在算力比较小的边缘设备或者其他IoT设备里面,就需要对大模型进行压缩。Lower latency:低时延 Privacy:私密性介绍5个网络压缩的方法,我们只考虑算法(软件)层面,不考虑硬件层面的解决方法。Network Pruning(网络剪枝)对于一个大的网络来说,我们能想到的是,众多网络参数中一定会有不重要/冗余的一些参数,因此我们将这些参数减掉达到网络压缩的目的。网络剪枝的步骤如下:
2022-04-28 22:02:52
2592
1
转载 推荐系统领域最新研究进展(0410-0417)
本文精选了上周(0410-0417)最新的20篇推荐系统相关的论文,方向主要包括去偏推荐、对话推荐、基于负采样的推荐、联邦推荐、公平性推荐、序列化推荐、加速推荐系统训练、时尚推荐、新闻推荐、基于内容的协同过滤推荐等的推荐算法,应用涵盖会话推荐、序列推荐以及组推荐、新闻推荐等。为节省大家时间,只整理了论文标题以及摘要,如果感兴趣可移步原文精读。论文标题:Self-Guided Learning to Denoise for Robust Recommendation, SIGIR2022A Unifi
2022-04-24 21:51:43
2959
转载 图神经网络入门
近年来,深度学习领域关于图神经网络(Graph Neural Networks,GNN)的研究热情日益高涨,图神经网络已经成为各大深度学习顶会的研究热点。GNN处理非结构化数据时的出色能力使其在网络数据分析、推荐系统、物理建模、自然语言处理和图上的组合优化问题方面都取得了新的突破。图神经网络有很多比较好的综述[1][2][3]可以参考,更多的论文可以参考清华大学整理的GNN paper list[4]。本篇文章将从一个更直观的角度对当前经典流行的GNN网络,包括GCN、GraphSAGE、GAT、.
2022-04-13 14:41:44
513
转载 张量学习:张量补全(tensor completion)
目录一、什么是张量(Tensor)?二、张量补全(tensor completion)1 基于张量分解的方法1.1 基于CP分解1.2 基于Tucker分解1.3 基于张量链分解1.4 基于张量环分解1.5 基于t-SVD分解2 秩最小化模型2.1 Tucker秩最小化模型2.2 张量链秩最小化模型2.3 管秩最小化模型一、什么是张量(Tensor)?张量这个词英文叫Tensor。很多人有可能觉得比较陌生,但相信大部分人都听说过Tensor...
2022-04-07 15:37:37
5553
3
转载 最新深度学习推荐系统综述:从协同过滤到信息增强的推荐系统
前言深度学习技术已经在计算机视觉以及自然语言理解等领域取得了巨大的成功,受其影响深度学习研究也开始在推荐系统领域得到关注。近些年来,已经见证了基于神经网络的推荐系统的巨大进步,其已经超越了传统推荐模型的性能。不同于基于深度模型的结构进行综述(比如以MLP、CNN、RNN等进行分类),也不同于对于某一子领域进行综述(比如跨域推荐、知识图谱推荐等),本次介绍的论文以推荐模型的准确性为目标,从推荐模型的角度对神经推荐模型进行了系统的综述,旨在总结该领域的研究成果,为研究推荐系统的研究者和实践者...
2022-03-29 11:14:21
2050
转载 深度神经网络压缩和加速详解+张量化网络论文汇总
目录 1.背景介绍 2.压缩方法概述 3.压缩方法详述 3.1参数剪枝 3.2参数量化 3.3低秩分解(张量分解) 3.4参数共享 3.5紧凑网络 3.6知识蒸馏 3.7混合模型 3.8不同压缩模型比较 1.背景介绍 深度学习模型的压缩和加速是指利用神经网络参数的冗余性和网络结构的冗余性精简...
2022-03-21 17:53:22
2404
转载 走进跨域推荐系统
作者简介:张高玮,研究方向为推荐系统。引言:近年来跨域推荐方法逐渐受到人们的关注,为解决推荐系统中数据稀疏以及冷启动这两个问题提供了新的思路。本文聚焦于跨域推荐,依据解决方法的不同将跨域推荐模型分为基于共享实体表示的模型、基于域间映射的模型、基于异构图嵌入的模型、基于多领域协同训练的模型四大类进行整理介绍,欢迎大家批评和交流。目录1. 总体介绍1.1 什么是跨域推荐1.2 为什么需要跨域推荐2. 模型分类2.1 基于共享实体表示的模型2.2 基于域间映射的模型2.3 基于异构图嵌入的模型2.4 基于多领域协
2022-03-17 21:51:50
1091
1
转载 图神经网络在推荐系统的应用研究综述
概要如今推荐系统的研究非常火热,GNN也在很多领域表现优异。推荐系统主要的挑战是从历史交互(historical interactions)和边信息(side information)中学习有效的用户(user)和物品(item)表示,由于很多信息具有图结构,而且GNN擅长表示学习,所以很多工作将GNN应用到推荐系统中。本文是北京大学相关团队发表的一篇「基于GNN的推荐系统」方向的综述,文章回顾了近几年GNN在推荐系统中的相关工作,提出了一个新的分类体系,并阐述了有关该领域未来发展的新观点。..
2022-03-08 10:05:20
2408
原创 GNN用于交通预测
文章目录GNN用于交通预测一、交通图分类二、邻接矩阵分类三、GNN分类四、挑战五、未来方向GNN用于交通预测一、交通图分类现有的交通图分为三个级别,即道路级别,区域级别和站点级别图。道路水平流量问题(道路交通流量、道路起点-终点(OD)流量和交叉口交通吞吐量),在道路交通流问题中,预测目标是在特定时间段内通过道路传感器或道路沿线特定位置的交通量。在道路OD流量问题中,目标是单个时间点上一个位置(起点)和另一个位置(终点)之间的交通量。交叉口交通吞吐量问题考虑了通过交叉口的交通量。区域层
2021-12-08 22:27:58
2567
转载 可视化推导贝叶斯定理公式
转自:极市平台 微信公众号 https://mp.weixin.qq.com/s/DbInmnMCigzmjnr_1uzEiA什么是贝叶斯定理?在统计和应用数学中,贝叶斯定理也被称为贝叶斯规则,它是一个用于确定事件的偶然性概率的数学公式。贝叶斯定理描述了由事件相关条件的先验知识支持的事件发生的概率。这个定理以英国统计学家贝叶斯的名字命名,他在1763年发现了这个公式。它被认为是被称为贝叶斯推断的特殊统计推断方法的灵感。除了统计学之外,贝叶斯定理还被用于医学和药理学等各个学科。该理论通常.
2021-12-02 15:59:08
223
雅虎音乐数据集1.0版本yahoo-music.zip
2021-03-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅