山科智能信息处理实验室
码龄4年
关注
提问 私信
  • 博客:273,717
    273,717
    总访问量
  • 30
    原创
  • 65,995
    排名
  • 676
    粉丝
  • 29
    铁粉
  • 学习成就

个人简介:该博客旨在记录智能处理实验室一系列学术成果,以及实验室的点点滴滴。 如果有博客中提到的论文或代码需求,烦请联系邮箱jlzhao@sdust.edu.cn

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2021-03-12
博客简介:

SmartLab307的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    892
    当月
    10
个人成就
  • 获得442次点赞
  • 内容获得34次评论
  • 获得2,328次收藏
  • 代码片获得905次分享
创作历程
  • 23篇
    2024年
  • 27篇
    2023年
  • 28篇
    2022年
  • 33篇
    2021年
成就勋章
TA的专栏
  • 技术转载
    28篇
  • 遥感图像
    5篇
  • 赛事专栏
    1篇
  • 交通大数据
    10篇
  • 推荐系统
    13篇
  • 图像恢复
    3篇
  • 基础理论
    35篇
  • 学习方法转载
    10篇
  • 论文写作方法
    3篇
  • 实验室简介
    5篇
  • 毕业生专栏
    1篇
兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 人工智能
    神经网络
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

大模型的原理、应用与未来趋势

如果说统计模型是一个熟练的棋手,那么神经模型就像是一个天才棋手,不仅记住了大量的棋谱,还能理解每步棋背后的深层策略。例如,在Falcon40B模型的训练过程中,研究人员对CommonCrawl数据进行了大规模的过滤和去重,最终从原始的数万亿个token中筛选出了约5万亿个高质量的token。构建一个成功的大语言模型,就像精心打造一座宏伟的建筑。例如你可以用自然语言告诉Alpaca “为我的宠物猫设计一个自动喂食器”,它不仅能理解你的需求,还能给出详细的设计方案,包括材料清单、组装步骤,甚至可能的改进建议。
转载
发布博客 2024.11.10 ·
11 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

综述:深度图像先验

一句话概括:逆/反成像问题指从有噪声的观测中还原出真实信号的问题以下使用逆问题的说法推荐这个视频,几分钟就讲清楚了综述论文中第一部分的内容REI:完全无监督的成像逆问题框架【CVPR 2022 Oral】_哔哩哔哩_bilibili​www.bilibili.com/video/BV1GS4y1v7wr/?vd_source=0f9579b55d8552e605ea0761f15e41f2​编辑*以下黑色背景的图片均出自该视频x是感兴趣的未知图像,A是测量算子,用A对x进行观测,得到观测值y。
转载
发布博客 2024.11.03 ·
37 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读_序列推荐】Intent Contrastive Learning for Sequential Recommendation

上述公式求解很复杂,因此根据EM算法,构造上式的下界,通过最大化下界来最大化上式,假设意图c满足分布Q(c),∑cQ(ci)=1,并且Q(c)≥0,可以得到下式,等式右边第一个是求期望,第二个是乘上Q()/Q(),值不变。但是直接优化上式存在一个问题,就是不同的用户可能存在相同的意图,如果直接优化,可能会把相同意图的也作为负样本,即假阴性。前面我们提到序列推荐中,每次都用前t个子序列来预测第t+1时的商品,为了简化ICL损失函数的计算,只考虑最后一步的下界,则可以去掉上式的中间的求和,公式如下,
转载
发布博客 2024.10.27 ·
53 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ST-LLM

A: 这篇论文介绍了STG-LLM(Spatial-Temporal Graph-Large Language Model),一种创新的方法,旨在利用大型语言模型(LLMs)进行时空预测。问题背景论文指出,尽管LLMs在自然语言处理和计算机视觉等领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要是因为文本数据与时空数据之间的差异。STG-LLM方法为了解决这一问题,论文提出了STG-LLM,它包含两个关键组件:STG-Tokenizer和STG-Adapter。
转载
发布博客 2024.10.22 ·
48 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GraphRAG Survey 解读

GraphRAG的核心思想是将知识图谱中的结构化信息(如节点、三元组、路径或子图)与LLMs的输出相结合,以提供更准确和丰富的生成结果。由于知识图谱中的结构化信息是经过组织和整理的,因此可以更方便地进行信息的检索和聚合,从而避免冗余信息的出现。为了解决这个问题,图检索增强生成(GraphRAG) 利用了实体之间的结构信息,实现了更精确、全面的检索,捕捉了关系知识,促进了更准确、上下文感知的响应。这一阶段的目标是通过选择或构建适当的图数据,并建立有效的索引,来为后续的GraphRAG过程提供坚实的基础。
转载
发布博客 2024.10.13 ·
71 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

从人机交互出发解读Prompt Engineering (提示词工程)

我们选择了经典的3个数据集:ImageNet-LT、Places-LT、以及iNaturalist,然后测试CLIP在不同数据上的结果,发现其并非一往无前,而是在稀疏少见的类别上(如iNaturalist数据集的大多数类别)均表现不好,精度只有。注意,并不是所有的prompt都有这样的形式,如比较简短的prompt:“中国的首都在哪里”、“模仿百年孤独的开头写一段话”这种言简意赅的prompt就只有指令、没有内容。我们输入的这些prompt,将会被模型识别、处理,最终输出为我们要的答案。
转载
发布博客 2024.09.29 ·
103 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

大语言模型(LLM)综述

自2022年11月发布 ChatGPT 以来,大语言模型(LLM)因其在各种自然语言任务上的出色表现而备受关注。LLM的通用语言理解和生成能力是通过在大量文本数据上训练数十亿个模型参数来获得的,正如Scaling Laws所预测的那样(OpenAI 2020年提出的,简单的说就是:随着模型大小、数据集大小和用于训练的计算浮点数的增加,模型的性能会提高)。LLM的研究领域虽然是最近才出现的,但正在以许多不同的方式迅速发展。
转载
发布博客 2024.09.22 ·
139 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

大模型微调方法综述

Prefix Tuning针对不同的模型结构有设计不同的模式,以自回归的模型为例,不再使用token去作为前缀,而是直接使用参数作为前缀,比如一个l × d l × dl×d的矩阵P PP作为前缀,但直接使用这样的前缀效果不稳定,因此使用一个MLP层重参数化,并放大维度d dd,除了在embedding层加入这个前缀之外,还在其他的所有层都添加这样一个前缀。简单来说模型的参数就类比于,一个在大学学习到所有专业的知识的大学生,基于过往的学习经验以及对生活中的一些事情,已经有了属于自己的一套学习方法思维逻辑。
转载
发布博客 2024.09.15 ·
325 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ChatGPT/InstructGPT详解

GPT系列是OpenAI的一系列预训练文章,GPT的全称是Generative Pre-Trained Transformer,顾名思义,GPT的目的就是通过Transformer为基础模型,使用预训练技术得到通用的文本模型。目前已经公布论文的有文本预训练GPT-1,GPT-2,GPT-3,以及图像预训练iGPT。据传还未发布的GPT-4是一个多模态模型。最近非常火的ChatGPT和今年年初公布的[1]是一对姐妹模型,是在GPT-4之前发布的预热模型,有时候也被叫做GPT3.5。
转载
发布博客 2024.09.08 ·
89 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

大模型RAG综述

RAG(Retrieval-Augmented Generation)是一种先进的技术框架,旨在通过结合大型语言模型(LLMs)的内在知识与外部数据源的动态知识库,提升模型在知识密集型任务中的准确性和可信度。RAG技术通过三个主要的发展阶段——Naive RAG、Advanced RAG和Modular RAG——不断演进,其中涉及关键组件如检索、生成和增强技术的优化。它通过索引、检索和生成步骤,使得模型能够处理大规模数据集,同时保持了数据的实时更新和安全性。
转载
发布博客 2024.09.01 ·
118 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2023 联邦推荐系统综述

2023 联邦推荐系统综述 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,
原创
发布博客 2024.06.24 ·
1163 阅读 ·
25 点赞 ·
0 评论 ·
11 收藏

联邦学习中的知识蒸馏

联邦学习 (FL) 已被提议作为基于云的深度学习 (DL) 的替代方案。这种范例将训练 DL 模型的能力与收集原始数据、交替在设备上计算和定期通信的需要分离开来 [34、4]。在学习过程中,联邦中的参与者只需要披露短暂的、本地处理的有效载荷,这使得推断个人的私人信息变得更加困难。联邦平均 (FedAvg) 代表联邦学习 (FL) [34] 的基线算法。在 FedAvg 中,协作学习通过利用。
转载
发布博客 2024.06.18 ·
1362 阅读 ·
2 点赞 ·
0 评论 ·
12 收藏

视觉Mamba来了:速度提升2.8倍,内存能省87%

在 ImageNet 分类任务、COCO 对象检测任务和 ADE20k 语义分割任务上,与 DeiT 等成熟的视觉 Transformers 相比,Vim 实现了更高的性能,同时还显著提高了计算和内存效率。随后直接堆叠 L 个 Vim 块。Mamba 的提出带动了研究者对状态空间模型(state space model,SSM)兴趣的增加,不同于 Transformer 中自注意力机制的计算量会随着上下文长度的增加呈平方级增长,由于 SSM 擅长捕捉远程依赖关系,因而开始受到大家追捧。
转载
发布博客 2024.06.13 ·
139 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2024国内热门大语言模型在科研方面的应用

开发方:百度特点:专注于中文语言理解与生成,适合中文文本的语义理解任务。百度推出的文心一言,依托百度庞大的数据资源和强大的自然语言处理技术,能够进行高质量的文本生成、问答和多轮对话。它在中文场景下的表现尤为突出,对于中文语境的理解和生成能力极强。上述大模型各有自己的优势,要结合自己的任务和模型特点,选择合适的模型使用。
原创
发布博客 2024.06.05 ·
1231 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

最新张量补全论文收集【8篇】

最新张量补全论文收集(8篇)
原创
发布博客 2024.06.03 ·
1402 阅读 ·
10 点赞 ·
0 评论 ·
28 收藏

CVPR2024论文盘点(10篇):包括多模态大模型,目标检测,图像分割

通过这种方法,在PASCAL VOC 2012和MS COCO 2014两个标准数据集上的实验不仅验证了CPAL的有效性,还展示了它在提升模型性能方面的显著优势,推动了该领域的进步至新的高度。随着深度学习的快速发展,模型可用训练数据规模呈指数级上升,大规模语言模型和多模态模型的通用理解能力得到了巨大的提高,出现了一批能解决多种任务的统一模型。在推理阶段,通过将先前帧中预测的物体掩码作为它们的视觉提示,UniVS 将不同的视频分割任务转化为以提示为导向的目标分割,消除了启发式的帧间匹配过程。
转载
发布博客 2024.05.29 ·
14337 阅读 ·
7 点赞 ·
0 评论 ·
80 收藏

2023-2024 联邦推荐 × 顶会

abstractTranslation: 联邦推荐可以潜在地缓解收集敏感数据和个人数据以训练个性化推荐系统时的隐私问题。然而,当由于本地资源限制而不适用本地服务并且在线服务需要查询客户端的数据隐私时,其推荐质量较低。此外,在联邦推荐的训练和服务中理论上的私有解决方案是必要的,但仍然缺乏。由于模型梯度和隐藏表示的高维特性,将差分隐私(DP)简单地应用于联邦推荐的两个阶段将无法在隐私和效用之间实现令人满意的权衡。
原创
发布博客 2024.05.13 ·
1676 阅读 ·
28 点赞 ·
0 评论 ·
22 收藏

【转载】解读Mamba序列模型

他在SSM的基础上,通过此篇论文《》首次提出了结构化状态空间S4(这里有关于S4的更多论文),但这篇论文的可读性比较差;当然,作者在YouTube上有一个关于这篇S4论文的精彩解读,比S4论文的可读性提高很多,且本文中也应用了其中的部分PPT截图,但还可以更加通俗易懂;此外,Maarten Grootendorst写了一篇《A Visual Guide to Mamba and State Space Models》,可读性较强。
转载
发布博客 2024.05.07 ·
2723 阅读 ·
5 点赞 ·
0 评论 ·
20 收藏

ICCV 2023 | CV热门研究方向

ICCV2023
转载
发布博客 2024.04.29 ·
126 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

基于扩散模型的图像编辑:首篇综述

去噪扩散模型已成为各种图像生成和编辑任务的有力工具,有助于以无条件或输入条件的方式合成视觉内容。这些模型背后的核心理念是学习如何逆转逐渐向图像中添加噪声的过程,从而从复杂的分布中生成高质量的样本。在这份调查报告中,我们详尽概述了使用扩散模型进行图像编辑的现有方法,涵盖了该领域的理论和实践方面。我们从学习策略、用户输入条件和可完成的一系列具体编辑任务等多个角度对这些作品进行了深入分析和分类。
转载
发布博客 2024.04.24 ·
854 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏
加载更多