- 博客(111)
- 资源 (2)
- 收藏
- 关注
转载 大模型的原理、应用与未来趋势
如果说统计模型是一个熟练的棋手,那么神经模型就像是一个天才棋手,不仅记住了大量的棋谱,还能理解每步棋背后的深层策略。例如,在Falcon40B模型的训练过程中,研究人员对CommonCrawl数据进行了大规模的过滤和去重,最终从原始的数万亿个token中筛选出了约5万亿个高质量的token。构建一个成功的大语言模型,就像精心打造一座宏伟的建筑。例如你可以用自然语言告诉Alpaca “为我的宠物猫设计一个自动喂食器”,它不仅能理解你的需求,还能给出详细的设计方案,包括材料清单、组装步骤,甚至可能的改进建议。
2024-11-10 22:27:57
11
转载 综述:深度图像先验
一句话概括:逆/反成像问题指从有噪声的观测中还原出真实信号的问题以下使用逆问题的说法推荐这个视频,几分钟就讲清楚了综述论文中第一部分的内容REI:完全无监督的成像逆问题框架【CVPR 2022 Oral】_哔哩哔哩_bilibiliwww.bilibili.com/video/BV1GS4y1v7wr/?vd_source=0f9579b55d8552e605ea0761f15e41f2编辑*以下黑色背景的图片均出自该视频x是感兴趣的未知图像,A是测量算子,用A对x进行观测,得到观测值y。
2024-11-03 22:40:50
37
转载 【论文阅读_序列推荐】Intent Contrastive Learning for Sequential Recommendation
上述公式求解很复杂,因此根据EM算法,构造上式的下界,通过最大化下界来最大化上式,假设意图c满足分布Q(c),∑cQ(ci)=1,并且Q(c)≥0,可以得到下式,等式右边第一个是求期望,第二个是乘上Q()/Q(),值不变。但是直接优化上式存在一个问题,就是不同的用户可能存在相同的意图,如果直接优化,可能会把相同意图的也作为负样本,即假阴性。前面我们提到序列推荐中,每次都用前t个子序列来预测第t+1时的商品,为了简化ICL损失函数的计算,只考虑最后一步的下界,则可以去掉上式的中间的求和,公式如下,
2024-10-27 14:10:35
53
转载 ST-LLM
A: 这篇论文介绍了STG-LLM(Spatial-Temporal Graph-Large Language Model),一种创新的方法,旨在利用大型语言模型(LLMs)进行时空预测。问题背景论文指出,尽管LLMs在自然语言处理和计算机视觉等领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要是因为文本数据与时空数据之间的差异。STG-LLM方法为了解决这一问题,论文提出了STG-LLM,它包含两个关键组件:STG-Tokenizer和STG-Adapter。
2024-10-22 18:34:15
48
转载 GraphRAG Survey 解读
GraphRAG的核心思想是将知识图谱中的结构化信息(如节点、三元组、路径或子图)与LLMs的输出相结合,以提供更准确和丰富的生成结果。由于知识图谱中的结构化信息是经过组织和整理的,因此可以更方便地进行信息的检索和聚合,从而避免冗余信息的出现。为了解决这个问题,图检索增强生成(GraphRAG) 利用了实体之间的结构信息,实现了更精确、全面的检索,捕捉了关系知识,促进了更准确、上下文感知的响应。这一阶段的目标是通过选择或构建适当的图数据,并建立有效的索引,来为后续的GraphRAG过程提供坚实的基础。
2024-10-13 16:27:40
71
转载 从人机交互出发解读Prompt Engineering (提示词工程)
我们选择了经典的3个数据集:ImageNet-LT、Places-LT、以及iNaturalist,然后测试CLIP在不同数据上的结果,发现其并非一往无前,而是在稀疏少见的类别上(如iNaturalist数据集的大多数类别)均表现不好,精度只有。注意,并不是所有的prompt都有这样的形式,如比较简短的prompt:“中国的首都在哪里”、“模仿百年孤独的开头写一段话”这种言简意赅的prompt就只有指令、没有内容。我们输入的这些prompt,将会被模型识别、处理,最终输出为我们要的答案。
2024-09-29 21:52:43
103
转载 大语言模型(LLM)综述
自2022年11月发布 ChatGPT 以来,大语言模型(LLM)因其在各种自然语言任务上的出色表现而备受关注。LLM的通用语言理解和生成能力是通过在大量文本数据上训练数十亿个模型参数来获得的,正如Scaling Laws所预测的那样(OpenAI 2020年提出的,简单的说就是:随着模型大小、数据集大小和用于训练的计算浮点数的增加,模型的性能会提高)。LLM的研究领域虽然是最近才出现的,但正在以许多不同的方式迅速发展。
2024-09-22 21:37:46
139
转载 大模型微调方法综述
Prefix Tuning针对不同的模型结构有设计不同的模式,以自回归的模型为例,不再使用token去作为前缀,而是直接使用参数作为前缀,比如一个l × d l × dl×d的矩阵P PP作为前缀,但直接使用这样的前缀效果不稳定,因此使用一个MLP层重参数化,并放大维度d dd,除了在embedding层加入这个前缀之外,还在其他的所有层都添加这样一个前缀。简单来说模型的参数就类比于,一个在大学学习到所有专业的知识的大学生,基于过往的学习经验以及对生活中的一些事情,已经有了属于自己的一套学习方法思维逻辑。
2024-09-15 23:50:21
325
转载 ChatGPT/InstructGPT详解
GPT系列是OpenAI的一系列预训练文章,GPT的全称是Generative Pre-Trained Transformer,顾名思义,GPT的目的就是通过Transformer为基础模型,使用预训练技术得到通用的文本模型。目前已经公布论文的有文本预训练GPT-1,GPT-2,GPT-3,以及图像预训练iGPT。据传还未发布的GPT-4是一个多模态模型。最近非常火的ChatGPT和今年年初公布的[1]是一对姐妹模型,是在GPT-4之前发布的预热模型,有时候也被叫做GPT3.5。
2024-09-08 23:45:28
90
转载 大模型RAG综述
RAG(Retrieval-Augmented Generation)是一种先进的技术框架,旨在通过结合大型语言模型(LLMs)的内在知识与外部数据源的动态知识库,提升模型在知识密集型任务中的准确性和可信度。RAG技术通过三个主要的发展阶段——Naive RAG、Advanced RAG和Modular RAG——不断演进,其中涉及关键组件如检索、生成和增强技术的优化。它通过索引、检索和生成步骤,使得模型能够处理大规模数据集,同时保持了数据的实时更新和安全性。
2024-09-01 22:29:57
118
原创 2023 联邦推荐系统综述
2023 联邦推荐系统综述 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,
2024-06-24 16:21:46
1163
转载 联邦学习中的知识蒸馏
联邦学习 (FL) 已被提议作为基于云的深度学习 (DL) 的替代方案。这种范例将训练 DL 模型的能力与收集原始数据、交替在设备上计算和定期通信的需要分离开来 [34、4]。在学习过程中,联邦中的参与者只需要披露短暂的、本地处理的有效载荷,这使得推断个人的私人信息变得更加困难。联邦平均 (FedAvg) 代表联邦学习 (FL) [34] 的基线算法。在 FedAvg 中,协作学习通过利用。
2024-06-18 16:15:10
1362
转载 视觉Mamba来了:速度提升2.8倍,内存能省87%
在 ImageNet 分类任务、COCO 对象检测任务和 ADE20k 语义分割任务上,与 DeiT 等成熟的视觉 Transformers 相比,Vim 实现了更高的性能,同时还显著提高了计算和内存效率。随后直接堆叠 L 个 Vim 块。Mamba 的提出带动了研究者对状态空间模型(state space model,SSM)兴趣的增加,不同于 Transformer 中自注意力机制的计算量会随着上下文长度的增加呈平方级增长,由于 SSM 擅长捕捉远程依赖关系,因而开始受到大家追捧。
2024-06-13 22:45:11
139
原创 2024国内热门大语言模型在科研方面的应用
开发方:百度特点:专注于中文语言理解与生成,适合中文文本的语义理解任务。百度推出的文心一言,依托百度庞大的数据资源和强大的自然语言处理技术,能够进行高质量的文本生成、问答和多轮对话。它在中文场景下的表现尤为突出,对于中文语境的理解和生成能力极强。上述大模型各有自己的优势,要结合自己的任务和模型特点,选择合适的模型使用。
2024-06-05 14:58:37
1231
转载 CVPR2024论文盘点(10篇):包括多模态大模型,目标检测,图像分割
通过这种方法,在PASCAL VOC 2012和MS COCO 2014两个标准数据集上的实验不仅验证了CPAL的有效性,还展示了它在提升模型性能方面的显著优势,推动了该领域的进步至新的高度。随着深度学习的快速发展,模型可用训练数据规模呈指数级上升,大规模语言模型和多模态模型的通用理解能力得到了巨大的提高,出现了一批能解决多种任务的统一模型。在推理阶段,通过将先前帧中预测的物体掩码作为它们的视觉提示,UniVS 将不同的视频分割任务转化为以提示为导向的目标分割,消除了启发式的帧间匹配过程。
2024-05-29 22:15:10
14338
原创 2023-2024 联邦推荐 × 顶会
abstractTranslation: 联邦推荐可以潜在地缓解收集敏感数据和个人数据以训练个性化推荐系统时的隐私问题。然而,当由于本地资源限制而不适用本地服务并且在线服务需要查询客户端的数据隐私时,其推荐质量较低。此外,在联邦推荐的训练和服务中理论上的私有解决方案是必要的,但仍然缺乏。由于模型梯度和隐藏表示的高维特性,将差分隐私(DP)简单地应用于联邦推荐的两个阶段将无法在隐私和效用之间实现令人满意的权衡。
2024-05-13 22:09:42
1676
转载 【转载】解读Mamba序列模型
他在SSM的基础上,通过此篇论文《》首次提出了结构化状态空间S4(这里有关于S4的更多论文),但这篇论文的可读性比较差;当然,作者在YouTube上有一个关于这篇S4论文的精彩解读,比S4论文的可读性提高很多,且本文中也应用了其中的部分PPT截图,但还可以更加通俗易懂;此外,Maarten Grootendorst写了一篇《A Visual Guide to Mamba and State Space Models》,可读性较强。
2024-05-07 14:38:08
2723
转载 基于扩散模型的图像编辑:首篇综述
去噪扩散模型已成为各种图像生成和编辑任务的有力工具,有助于以无条件或输入条件的方式合成视觉内容。这些模型背后的核心理念是学习如何逆转逐渐向图像中添加噪声的过程,从而从复杂的分布中生成高质量的样本。在这份调查报告中,我们详尽概述了使用扩散模型进行图像编辑的现有方法,涵盖了该领域的理论和实践方面。我们从学习策略、用户输入条件和可完成的一系列具体编辑任务等多个角度对这些作品进行了深入分析和分类。
2024-04-24 19:11:58
854
原创 交通大模型与时序大模型整理【共15篇工作】【附开源代码】
通过本文的阐述,我们希望能够为研究人员、决策者和城市规划者提供一些有益的参考,促进交通领域数据整理与分析工作的进一步发展与应用。
2024-04-16 15:41:12
4606
转载 个性化联邦学习综述
文章转载自题目:Towards Personalized Federated Learning收录于:IEEE Transactions on Neural Networks and Learning Systems (Mar 28, 2022)作者单位:NTU,Alibaba Group,SDU,HKUST,WeBank链接:https://arxiv.org/pdf/2103.00710.pdf。
2024-04-08 19:28:09
958
转载 联邦学习中的个性化技术(Personalization)
联邦学习中,由于数据的统计异构问题,用户间的隐私数据具有分散、Non-IID(非独立同分布)特性,每个用户本地的数据分布会随着用户所在地以及用户偏好而变动。原因很简单,模型的暴力聚合(FedAvg)并不是线性的求和,每个用户自身的模型参数仅适合本身的数据,而不同用户数据间的数据分布以及质量差距较大。
2024-04-02 19:49:06
392
转载 异构联邦学习综述:最新进展与研究挑战
联邦学习(Federated Learning, FL)因其在大规模工业应用中的潜力而受到越来越多的关注。现有的联邦学习工作主要关注模型同构的情况。然而,实际的联邦学习通常面临参与者客户端之间的数据分布、模型体系结构、网络环境和硬件设备的异构性。异构联邦学习(Heterogeneous Federated Learning, HFL)更具挑战性,其解决方案多样且复杂。因此,对该问题的研究挑战和最新进展进行系统综述是必要的。
2023-12-10 20:50:55
1499
转载 传统图像降噪算法之BM3D原理详解
图像降噪是一个十分具有实用价值的研究方向,因为噪声总是无处不在的。当处于比较昏暗的环境时,噪声将极大地影响着我们所拍摄的图像。如今,随着深度学习算法以及相关硬件的不断发展,深度卷积网络同样在图像降噪领域占据了主流,并且代表了该领域最优异的成绩。但是,深度神经网络同样有着其缺点,例如模型过于庞大而计算复杂度过高,以及缺乏一些理论上的解释性,当然这些缺点正不断地得到弥补。为了更好地理解图像降噪的基本原理,我们有必要回过头来仔细研读一些传统算法的具体思路,了解其所使用基本理论依据,以及一些巧妙的改进方法。
2023-12-01 11:53:18
1715
转载 联邦学习:联邦场景下的跨域推荐
跨域推荐在实际应用中常常面临隐私性的挑战,其一是不同用户的数据难以合法地进行集中化收集;其二是其使用的迁移学习模型跨不同的域和数据集进行映射,这常常会关联到不同的组织机构,同样会面临隐私问题。此时上面提到的需要将数据集中起来的跨域推荐方法就不再行得通了,需要考虑在联邦场景下的跨域推荐模型。
2023-11-07 16:46:38
715
原创 图像恢复介绍(持续更新)
的产生是信号在采集、传输以及记录过程中,受到成像设备自身因素和外界环境的影响而产生的。现实中的噪声是随机分布的,事实上,噪声无法完全去除,只能使得重现信号尽可能的接近原始信号,因此,去噪严格意义上只能被称之为降噪。通过去噪可以有效地增大图像信号的信噪比,提高图像质量 ,更好地体现原始图像所携带的信息。
2023-10-26 17:55:10
603
转载 Pytorch搭建YoloV5目标检测平台
源码下载YoloV5改进的部分(不完全)1、主干部分:使用了Focus网络结构,具体操作是在一张图片中每隔一个像素拿到一个值,这个时候获得了四个独立的特征层,然后将四个独立的特征层进行堆叠,此时宽高信息就集中到了通道信息,输入通道扩充了四倍。该结构在YoloV5第5版之前有所应用,最新版本中未使用。2、数据增强:Mosaic数据增强、Mosaic利用了四张图片进行拼接实现数据中增强,根据论文所说其拥有一个巨大的优点是丰富检测物体的背景!且在BN计算的时候一下子会计算四张图片的数据!
2023-10-19 14:12:09
367
原创 联邦学习中的数据非独立同分布问题
比如在一个图像分类数据集cifar-10中,共有6W张照片分为10类,在传统的图像分类实验中,数据集采用均匀划分的5w个作为训练集,1w个样本作为测试集。在传统的应用场景中,数据存储在中心,机器学习可以获取所有数据的整体信息,但是在联邦学习中,由于数据仅存储在本地,导致数据之间分布的不一致性。在传统的机器学习中,可以把训练集和测试集看成两个客户端,在之前的训练中,我们都是假设这两个客户端是IID的,这是通过训练数据集获得的模型在测试数据集上也能表现较好的重要保障。
2023-10-10 09:47:26
1666
1
原创 联邦学习应用研究现状及发展趋势
本文章主要参考第32届国际人工智能联合会议(IJCAI)上由清华大学人工智能研究院知识工程研究中心(KEG)、北京智谱华章科技有限公司、开放群岛开源社区联合编写的《2023联邦学习全球研究与应用趋势报告》,对重点内容进行总结提炼,并介绍部分学习资料,旨在帮助对联邦学习感兴趣的学习者更快了解其研究现状及未来可能的发展趋势。
2023-09-26 09:17:22
1742
转载 图像分割综述
所谓图像分割就是根据图像中所具有的特征将其划分为互不相交的子区域,在同一区域的像素点具有一定的相关性,不同区域的像素点存在一定的差异性,也即是对图像中有着相同性质的像素赋予相同标签的过程。图像分割技术根据其自身的特点和目的经常被应用于一些图像的前期处理中,以便于获取图像的关键特征信息。以下将对各种图像分割算法进行一个介绍。
2023-09-15 09:50:12
386
转载 基于深度学习的图像恢复方法综述论文
topic【研究意义】在本文中,我们对用于图像恢复任务的深度学习方法进行了广泛的回顾。以卷积神经网络为首的深度学习技术在几乎所有图像处理领域,尤其是图像分类领域,都受到了广泛关注。然而,图像恢复是一个基本且具有挑战性的课题,在图像处理、理解和表示中起着重要作用。【图像恢复的细分研究方向】它通常处理图像去模糊 (image deblurring)、去噪 (denoising)、去雾 (dehazing) 和超分辨率 (super-resolution)。【图像恢复方法】
2023-09-11 11:56:20
1487
转载 基于联邦学习的推荐系统总结
本文总结了几篇基于联邦学习范式的推荐系统,分别从不同的层面对基本的联邦学习更新方式进行了优化,比如如何实现更好的聚合参数、如何更好的挑选待更新的客户端、如何保持更严格的隐私保护、如何减少更新过程中的通信量等。该方向相对来说是一个比较新的方向,其目标是在保护用户隐私的前提下如何实现本地模型更精准的推荐服务,但现在的实验验证方式基本都是靠模拟来完成的,即手动将完整的数据集切分为符合联邦学习方式的多个本地数据集。
2023-09-05 15:57:30
670
原创 联邦学习FedAvg-基于去中心化数据的深度网络高效通信学习
随着计算机算力的提升,机器学习作为海量数据的分析处理技术,已经广泛服务于人类社会。 然而,机器学习技术的发展过程中面临两大挑战:一是数据安全难以得到保障,隐私泄露问题亟待解决;二是网络安全隔离和行业隐私,不同行业部门之间存在数据壁垒,导致数据形成“孤岛”无法安全共享,而仅凭各部门独立数据训练的机器学习模型性能无法达到全局最优化。为解决上述问题,谷歌提出了联邦学习(FL,federated learning)技术。
2023-08-30 16:54:23
2768
1
转载 2023大型语言模型推荐技术进展综述: 分类、进展、问题、趋势.
大型语言模型(LLM)已成为自然语言处理(NLP)领域的强大工具,最近在推荐系统(RS)领域获得了极大关注。这些模型通过自监督学习在海量数据上进行训练,在学习通用表征方面取得了显著的成功,并有可能通过一些有效的转移技术(如微调和及时调整等)来增强推荐系统的各个方面。利用语言模型的力量提高推荐质量的关键在于利用其高质量的文本特征表征和广泛的外部知识覆盖来建立项目和用户之间的相关性。
2023-07-27 15:55:10
1277
转载 深入浅出的小波变换
从)到,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,下面我就按照傅里叶–>短时傅里叶变换–>小波变换的顺序,讲一下小波变换。
2023-06-28 16:09:24
828
原创 深度学习的低秩优化:在紧凑架构和快速训练之间取得平衡(上)
高度的计算复杂度和存储成本使得深度学习难以在资源受限的设备上使用,并且不环保,功耗高。本文专注于高效深度学习技术的低秩张量优化方法。在空间域,深度神经网络通过对网络参数进行( low rank approximation )进行压缩,以更少的网络参数直接降低了存储需求。在时域中,网络参数可以在几个中进行训练,从而实现快速收敛的高效训练。
2023-06-09 21:16:25
1537
原创 基于张量补全的交通数据复原文献汇总(最新)
由于传感器故障和通信故障等因素导致的交通数据缺失严重制约了ITS的发展与应用。如何准确、高效地恢复缺失数据已成为ITS的一个关键问题。近年来,LRTC(低秩张量补全)的方法已被广泛应用于交通数据补全。本文将介绍几篇最新的关于交通数据补全的文献。欢迎批评指正!
2023-06-06 22:14:03
1774
1
雅虎音乐数据集1.0版本yahoo-music.zip
2021-03-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅