Wilbert的博客

我们背靠万丈深渊 我们只能大步向前

POJ-3734 Blocks

题目大意:

有n个blocks,让你用红,蓝,绿,黄四种颜色染上色,其中红色和绿色的block都是偶数个的方案有多少个。

解题思路:

其实这是个DP...啊一脸狗血...

其实模型很像这题....HDU 1143 Tri Tiling

首先,假设dp[i][0]表示当涂了前i个blocks之后,红色和绿色都是偶数个的方案个数,dp[i][1]表示当涂了前i个blocks之后,红色和绿色只有一个是偶数个的方案个数,dp[i][2]表示当涂了前i个blocks之后,红色和绿色都不是偶数个的方案个数

那么状态转移为:

dp[i+1][0] = 2 * dp[i][0] + dp[i][1] 

表示涂了前i+1个之后红色和绿色都是偶数个,那么前i个可以是红色和绿色都是偶数个,第i+1个选择蓝色或黄色,或者前i个是红色和绿色有一个是偶数个,那么第i+1个选择为不是偶数个的那一个。

以此类推。得出所有的状态转移:

dp[i+1][0] = 2 * dp[i][0] + dp[i][1]

dp[i+1][1] = 2 * dp[i][0] + 2 * dp[i][1] + 2 * dp[i][2]

dp[i+1][2] = dp[i][1] + 2 * dp[i][2]

如果你以为就这么结束那真是亦可赛艇...这题关键在于n数量级极大,即使你用滚动数组去维护依旧无法拜托超时的厄运。所以需要加速。

于是矩阵快速幂诞生了。(xjb扯的

怎么转换矩阵快速幂可以参考斐波那契数列...

代码:

#include <cstdio>
#include <cstring>
using namespace std;

const int mod = 10007;
typedef struct node {
	int mat[4][4];
	node() { memset(mat, 0, sizeof(mat)); }
}Matrix;

Matrix operator * (Matrix a, Matrix b) {
	Matrix ans;
	for (int i = 0; i < 3; ++i)
		for (int j = 0; j < 3; ++j)
			for (int k = 0; k < 3; ++k)
				ans.mat[i][j] = (ans.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % mod;
	return ans;
}
Matrix operator ^ (Matrix a, int num) {
	Matrix ans;
	for (int i = 0; i < 3; ++i) ans.mat[i][i] = 1;
	while (num) {
		if (num & 1) ans = ans * a;
		a = a * a;
		num >>= 1;
	}
	return ans;
}
int main() {
	int n, t;
	scanf("%d", &t);
	while (t--) {
		Matrix m;
		scanf("%d", &n);
		m.mat[0][0] = 2; m.mat[0][1] = 1; m.mat[0][2] = 0;
		m.mat[1][0] = 2; m.mat[1][1] = 2; m.mat[1][2] = 2;
		m.mat[2][0] = 0; m.mat[2][1] = 1; m.mat[2][2] = 2;
		m = m ^ n;
		printf("%d\n", m.mat[0][0]);
	}
	return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Snow_Me/article/details/52372420
文章标签: dp 矩阵快速幂 POJ
个人分类: POJ
上一篇UVAlive-3363 String Compression
下一篇BZOJ-1001 [BeiJing2006]狼抓兔子
想对作者说点什么? 我来说一句

BootStrap模板-Blocks

2014年11月03日 2.66MB 下载

没有更多推荐了,返回首页

关闭
关闭