SongGu1996
码龄7年
关注
提问 私信
  • 博客:303,756
    303,756
    总访问量
  • 23
    原创
  • 430,904
    排名
  • 349
    粉丝
  • 14
    铁粉

个人简介:放射影像分析、病理图像分析、深度学习(分类任务;ROI分割;图像超分;风格迁移)、机器学习(特征工程)

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2018-04-03
博客简介:

SongGu1996的博客

查看详细资料
个人成就
  • 获得867次点赞
  • 内容获得133次评论
  • 获得3,224次收藏
  • 代码片获得842次分享
创作历程
  • 2篇
    2022年
  • 7篇
    2020年
  • 14篇
    2019年
成就勋章
TA的专栏
  • 深度算法
    1篇
  • 机器学习
    13篇
  • 病理图像处理
    4篇
  • 放射影像处理
    1篇
  • Linux
    2篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

去噪扩散概率模型(Denoising Diffusion Probabilistic Model,DDPM)

去噪扩散概率模型(Denoising Diffusion Probabilistic Model, DDPM)在2020年被提出,向世界展示了扩散模型的强大能力,带动了扩散模型的火热。笔者出于兴趣自学相关知识,结合网络上的参考资料和自己的理解介绍DDPM。
原创
发布博客 2022.10.24 ·
10794 阅读 ·
33 点赞 ·
4 评论 ·
107 收藏

Win11安装OpenSlide(Python + MATLAB R2022a)

Window11下安装OpenSlide工具,包括了Python和MATLAB R2022a下的安装步骤
原创
发布博客 2022.07.05 ·
1610 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

细胞空间结构特征之-细胞集群特征(Matlab实现)

本文的目的是根据细胞的分割图像计算一些特征用于描述细胞的集群情况,细胞集群特征是细胞空间结构特征的一种,使用的编程工具为Matlab 2018b。本文中使用例子为TCGA细胞分割数据集中的一张,原始图像(尺寸为1000×1000)如下左,相应的细胞分割图(二值图)如下右,计算细胞集群特征使用的是右边的细胞分割图,原始图像不参与计算。首先根据细胞分割图计算一些提取细胞集群特征需要用到的......
原创
发布博客 2019.10.06 ·
1119 阅读 ·
2 点赞 ·
2 评论 ·
6 收藏

BP神经网络

基础不牢,地动山摇。我在上一篇博客中详细介绍了感知机模型的原理和推导过程,在学习的过程中,我们发现单层感知机模型存在着许多不足,包括:① 模型仅在特征空间线性可分时才能收敛;② 对同样的数据集,感知机模型存在无穷多个解;③ 模型结构简单,并不能表达复杂的函数。这些缺点的存在,使得单层感知机模型“不堪大用”。在实际任务中,我们在更多情况下使用的是如下图所示的多层感知机模型,多层感知机在输入层和输...
原创
发布博客 2020.07.23 ·
650 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

感知机(Perceptron)

基础不牢,地动山摇。感知机(Perceptron),也叫感知器,它是二分类的线性模型,在模式识别算法的历史上占有重要的地位。感知机的输入为样本的特征向量,输出为样本的类别,取和二值。具体方法为:给样本的每一维特征引入一个相乘的权重来表达每个特征的重要程度,然后对乘积求和后加上偏置项。将结果送入符号函数,利用符号函数的二值特性将样本划分为两类。所以,训练感知机的目标可以概括为:寻找合适的权值和偏...
原创
发布博客 2020.07.23 ·
9727 阅读 ·
8 点赞 ·
2 评论 ·
51 收藏

K-均值聚类用于实际问题(Matlab实现)

我在上一篇博客中详细介绍了K-均值聚类(K-means)的相关内容,这篇博客基于上一篇博客中的理论,用一个例子介绍如何将K-均值聚类的理论实现到代码中,解决实际问题,编程工具为Matlab 2018b。本文使用安德森鸢尾花卉数据集(iris)作为演示的例子,这个数据集中包含150个样本,对应着它的150行,每一行包含着这个样本的4个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和样本的类别标签...
原创
发布博客 2020.07.23 ·
2473 阅读 ·
4 点赞 ·
0 评论 ·
33 收藏

K-均值聚类(K-means)

基础不牢,地动山摇。聚类(Clustering)是无监督学习的一种方法,在聚类分析中,我们事先不知道训练样本的类别标签或其他先验知识,唯一的分类依据只有样本的特征。聚类分析的方法为:利用某种相似性度量的方法,将相似的样本归到一个簇中,将不相似的样本归到不同的簇中,由此来实现样本的聚类划分。K-均值聚类(K-means)是聚类分析中最基础的一种方法,它将样本聚类到K个簇中(即将样本划分成K类),...
原创
发布博客 2020.07.23 ·
2932 阅读 ·
4 点赞 ·
0 评论 ·
13 收藏

交叉验证(Cross Validation)

基础不牢,地动山摇。交叉验证(Cross Validation)是常用的模型选择(模型评估)方法。在实际问题中,如果给定的样本数据充足,进行模型选择的方法是随机地将数据集划分成三部分,分别为训练集、验证集、测试集。在训练集上用不同的学习方法训练多个模型,将训练到的多个模型在验证集上验证,选择验证误差最小的模型作为最终的模型,最后用测试集对选出的最终模型进行测试,相应的思路流程图如下所示。而在数...
原创
发布博客 2020.07.23 ·
9398 阅读 ·
7 点赞 ·
4 评论 ·
54 收藏

傅里叶级数与傅里叶变换

基础不牢,地动山摇。傅里叶级数(周期函数):任何满足狄利克雷收敛条件的周期函数都能用一系列三角函数的和来表示。傅里叶变换(非周期函数):傅里叶变换从傅里叶级数变换而来,且傅里叶变换的应用不仅限于周期函数,也适用于非周期函数。1. 三角函数系的正交性定义三角函数系为这样一个集合:;三角函数系的正交性是指:从三角函数系中任取两个不同的元素,它们的乘积在上的定积分等于零。证明如下图:...
原创
发布博客 2019.09.03 ·
8701 阅读 ·
25 点赞 ·
8 评论 ·
75 收藏

主成分分析(Principal Component Analysis,PCA)

基础不牢,地动山摇。在实际问题中,人们为了全面、准确地掌握样本信息,往往会用尽可能多的指标(特征)来描述样本,这会带来以下两个问题:① 特征维度过多,会增加分析问题的难度和复杂性;② 特征之间是具有一定的相关关系的,即特征彼此之间有部分信息是重复的,这可能会影响人们对真正重要的特征的把握。基于上面两个问题,人们就希望在定量研究中涉及的特征较少,而得到的信息量又较多,并且特征之间保持...
原创
发布博客 2020.07.23 ·
1901 阅读 ·
6 点赞 ·
1 评论 ·
1 收藏

细胞空间结构特征之-德劳内三角形特征(Matlab实现)

本文目的是根据细胞中心点的德劳内三角形图计算一些统计量,定量地描述细胞的空间结构特征,使用的软件为Matlab 2018b。德劳内三角形(Delaunay)的定义和特点这里不再赘述,有兴趣钻研的小伙伴请自行百度。本文中使用例子为TCGA细胞分割数据集中的一张,原始图像(尺寸为1000×1000)如下左,相应的细胞分割图(二值图)如下右,计算德劳内三角形使用的是右边的细胞分割图,原始图像不参与计......
原创
发布博客 2019.08.22 ·
1376 阅读 ·
5 点赞 ·
12 评论 ·
6 收藏

线性判别分析(Linear Discriminant Analysis,LDA)

基础不牢,地动山摇。线性判别分析(Linear Discriminant Analysis,LDA)是一种经典的线性学习方法,它既可以用于分类问题,也可以用于有监督的特征降维。它的思想非常朴素:给定训练样本,设法将样本特征投影到一个向量上,并且希望同类样本的投影点越近越好,异类样本的投影点越远越好。在对新样本进行分类时,照样将新样本的特征投影到这个向量上,再根据投影点的位置来确定新样本的类别。...
原创
发布博客 2020.07.23 ·
12646 阅读 ·
38 点赞 ·
4 评论 ·
145 收藏

逻辑回归用于二分类任务(Matlab实现)

我在上一篇博客中详细介绍了逻辑回归的相关内容,这篇博客基于上一篇博客中的理论,用一个例子介绍如何将逻辑回归的理论实现到代码中,解决实际的二分类问题,编程工具为Matlab 2018b。本文使用的例子是安德森鸢尾花卉数据集(iris),这个数据集中包含150个样本,对应着它的150行,每一行包含这个样本的4个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和样本的类别标签(0或1或2,它们分别代表...
原创
发布博客 2019.08.13 ·
16012 阅读 ·
29 点赞 ·
19 评论 ·
266 收藏

逻辑回归(Logistic Regression)

基础不牢,地动山摇。文中加粗的字母(如,等)默认为列向量。用机器学习算法做分类任务的小伙伴一定使用过“逻辑回归分类器”这个东西,顾名思义,既然是个分类器,那逻辑回归肯定是用在分类任务中的。我在上一篇博客中介绍过回归任务与分类任务的区别:回归任务用来预测一个数值,分类任务用来预测一个标签。逻辑回归既然是用在分类任务中的,那它的名字里为什么要有“回归”两个字呢?我们可以来大胆地假设一下,逻...
原创
发布博客 2019.08.13 ·
3400 阅读 ·
11 点赞 ·
0 评论 ·
49 收藏

线性回归(Linear Regression)

基础不牢,地动山摇。首先,我认为我们需要先明确一下回归(Regression)与分类(Classification)的区别,这二者都是监督学习的核心问题,它们之间的区别总结如下:① 回归问题通常是用来预测一个数值,比如预测房价,预测工程耗时等。如果一个产品的实际价格为500元,通过回归分析预测结果为499元,我们认为这是一个比较好的回归分析。回归是对真实值的一种逼近预测。② 分类问题通...
原创
发布博客 2019.08.12 ·
1786 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

正则化(Regularization)

基础不牢,地动山摇。正则化(Regularization)在深度学习出现之前就已经应用了数十年,它的主要目的是限制模型(如神经网络、线性回归)的学习能力,以防止模型出现过拟合现象。那什么是模型的过拟合,为什么要防止过拟合?正则化又是怎么实现的呢?本文将会循序渐进地回答这些问题,希望能对大家有所帮助。1. 过拟合(Overfitting)1.1 训练模型的目的(本节参考《机器学习》西瓜书...
原创
发布博客 2019.08.11 ·
1012 阅读 ·
6 点赞 ·
0 评论 ·
9 收藏

交叉熵损失函数(Cross Entropy Loss)

基础不牢,地动山摇,读研到现在有一年多了,发现自己对很多经常打交道的知识并不了解,仅仅是会改一改别人的代码,这使我感到非常焦虑,自此开始我的打基础之路。如果博客中有错误的地方,欢迎大家评论指出,我们互相监督,一起学习进步。交叉熵损失函数(Cross Entropy Loss)在分类任务中出镜率很高,在代码中也很容易实现,调用一条命令就可以了,那交叉熵是什么东西呢?为什么它可以用来作为损失函数?...
原创
发布博客 2019.08.10 ·
128211 阅读 ·
515 点赞 ·
38 评论 ·
1781 收藏

细胞形态特征(Matlab实现)

本文的目的是根据细胞的分割图像定义一些特征用于定量地描述细胞形态,使用的编程工具为Matlab 2018b。本文中使用例子为TCGA细胞分割数据集中的一张,原始图像(尺寸为1000×1000)如下左,相应的细胞分割图(二值图)如下右,计算细胞形态学特征使用的是右边的细胞分割图,原始图像不参与计算。具体方法为:先对二值化后的细胞分割图寻找连通域,每个连通域都视作一个细胞,计算每个连通域的......
原创
发布博客 2019.08.09 ·
2474 阅读 ·
8 点赞 ·
0 评论 ·
41 收藏

MNIST数据集转换为.png图像(Python实现)

在图像分类任务中,PyTorch有一个现成的图片数据集读取函数 :torchvision.datasets.ImageFolder。这个api的使用方法为:假设所有图片数据都按文件夹保存好,每个文件夹下存储的是同一类别的图片数据,文件夹的名字为类别的名字。将这些按类别保存图片的文件夹都放到一个大文件夹下。在代码中的命令如下:dataset = torchvision.datasets.Im...
原创
发布博客 2019.08.08 ·
4789 阅读 ·
14 点赞 ·
6 评论 ·
27 收藏

图像灰度特征之-一阶统计量特征/灰度直方图特征(Matlab实现)

一阶统计量特征,或者说灰度直方图特征,主要思想是对整张图像,或者图像中的感兴趣区域进行一些统计学计算,求得相应的统计量,用于在灰度层面描述图像。需要注意的是,一阶统计量特征仅适用于单通道的灰度图像,如果想对彩色图像提取一阶统计量特征,需要先对彩色图像进行灰度化操作。本文的代码展示的是如何对图像的感兴趣区域提取一阶统计量特征。本文使用的例子是一例骨肿瘤患者的CT图像和它对应的肿瘤区域标记,原始C...
原创
发布博客 2019.08.07 ·
15329 阅读 ·
11 点赞 ·
0 评论 ·
64 收藏
加载更多