小目标神器!TPH-YOLOv5:将Transformer预测加载Yolov5!

点上方计算机视觉联盟获取更多干货

仅作学术分享,不代表本公众号立场,侵权联系删除

转载于:知乎Sophia

https://zhuanlan.zhihu.com/p/410752450

985人工智能博士笔记推荐

周志华《机器学习》手推笔记正式开源!附pdf下载链接,Github2500星!

本篇文章是北京航天航空大学尝试在Yolov5的基础上加入一些新的技巧tricks,最终将Transformer Prediction Head 加在Yolov5上,在无人机小目标检测中取得了不错的效果!

ab1f0273db0a70519d0d50fe64ab23ef.png

论文链接:arxiv.org/pdf/2108.11539

摘要:

bbf4cba5cfcedcce2eb61cf4c86c28c4.png

小目标检测实际情况

87f02d0c5dbe3d27b733a20b6664bde0.png

算法流程

e905c2bde0ee1ad25d2ce8b67106aa20.png

算法结构

915d1b67f77d9a5758f8ec160578375c.png

Transformer Encoder

71657e0db7b7621c08d0d19ac67e92d7.png

CBAM结构

895818a65eff24c789409be8a89c8c5b.png

混合矩阵

977c55a79b013e40586d92ba2d1f2df6.png

实验结果

bf229b6093a1d1cce7e1795decca02a5.png

d818fbfa5fa827d0af64ed03bc108603.png

检验效果图

edbaa80a179dca9e4866570fc3499651.png

效果确实很棒,值得学习

-------------------

END

--------------------

我是王博Kings,985AI博士,华为云专家、CSDN博客专家(人工智能领域优质作者)。单个AI开源项目现在已经获得了2100+标星。现在在做AI相关内容,欢迎一起交流学习、生活各方面的问题,一起加油进步!

我们微信交流群涵盖以下方向(但并不局限于以下内容):人工智能,计算机视觉,自然语言处理,目标检测,语义分割,自动驾驶,GAN,强化学习,SLAM,人脸检测,最新算法,最新论文,OpenCV,TensorFlow,PyTorch,开源框架,学习方法...

这是我的私人微信,位置有限,一起进步!

7db038b652c9df68c7a6a21ce7eff54a.png

王博的公众号,欢迎关注,干货多多

手推笔记:

思维导图  |  “模型评估与选择”  |  “线性模型”  |  “决策树”  |  “神经网络”  |  支持向量机(上)  |  支持向量机(下)  |  贝叶斯分类(上)  |  贝叶斯分类(下)  |  集成学习(上)  |  集成学习(下)  |  聚类  |  降维与度量学习  |  稀疏学习  |  计算学习理论  |  半监督学习  |  概率图模型  |  规则学习

增长见识:

博士毕业去高校难度大吗?  |  研读论文有哪些经验之谈?  |  聊聊跳槽这件事儿  |  聊聊互联网工资收入的组成  |  机器学习硕士、博士如何自救?  |  聊聊Top2计算机博士2021年就业选择  |  非科班出身怎么转行计算机?  |  有哪些相见恨晚的科研经验?  |  经验 | 计算机专业科班出身如何提高自己编程能力?  |  博士如何高效率阅读文献  |  有哪些越早知道越好的人生经验?  |  

其他学习笔记:

PyTorch张量Tensor  |  卷积神经网络CNN的架构  |  深度学习语义分割  |  深入理解Transformer  |  Scaled-YOLOv4!  |  PyTorch安装及入门  |  PyTorch神经网络箱  |  Numpy基础  |  10篇图像分类  |  CVPR 2020目标检测  |  神经网络的可视化解释  |  YOLOv4全文解读与翻译总结  | 

0335c5628d61a7463e271ac7def90253.gif

点分享

7124d3def9fb35de547eff0b05dd3e7a.gif

点收藏

83a243a9a64411595dcdf4fc871b5700.gif

点点赞

faf10d239faaaf5962302bf90aedf249.gif

点在看

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值