最近对抗生成网络(GAN)很

标签: c c++
24人阅读 评论(0) 收藏 举报
分类:
链接:https://www.nowcoder.com/acm/contest/91/A
来源:牛客网

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld

题目描述

最近对抗生成网络(GAN)很火,其中有一种变体WGAN,引入了一种新的距离来提高生成图片的质量。这个距离就是Wasserstein距离,又名铲土距离。
这个问题可以描述如下:


有两堆泥土,每一堆有n个位置,标号从1~n。第一堆泥土的第i个位置有ai克泥土,第二堆泥土的第i个位置有bi克泥土。小埃可以在第一堆泥土中任意移挪动泥土,具体地从第i个位置移动k克泥土到第j个位置,但是会消耗的体力。小埃的最终目的是通过在第一堆中挪动泥土,使得第一堆泥土最终的形态和第二堆相同,也就是ai=bi (1<=i<=n), 但是要求所花费的体力最小

左图为第一堆泥土的初始形态,右图为第二堆泥土的初始形态,颜色代表了一种可行的移动方案,使得第一堆泥土的形态变成第二堆泥土的形态


输入描述:

输入测试组数T,每组测试数据,第一行输入n,1<=n<=100000,紧接着输入两行,每行n个整数,前一行为a1, a2,…,an,后一行为b1,b2,…,bn.其中0<=ai,bi<=100000,1<=i<=n,数据保证 

输出描述:

对于每组数据,输出一行,将a土堆的形态变成b土堆的形态所需要花费的最小体力
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
int main()
{    
	ll a[100005],b[100005];
	ll n, sum = 0;
	int t;
	cin >> t;
	while(t --)
	{
		sum = 0;
		cin >> n;		
		for(int i = 1;i <= n;i ++)
		scanf("%lld",&a[i]);
		for(int i = 1;i <= n;i ++)
		scanf("%lld",&b[i]);
		for(int i = 1;i <= n;i ++)
		a[i] -= b[i];
		
		for(int i = 2;i <= n;i ++)
		{
			sum += abs(a[i-1]);
			a[i] += a[i-1];
		}
		cout << sum << endl;
	}
	return 0; 
}


查看评论

深度学习项目实战-对抗生成网络

-
  • 1970年01月01日 08:00

对抗生成网络(Generative Adversarial Net)

现在,生成模型还没有体会到深度学习的利好,在Discriminative模型上,成果如雨后春笋,但在生成模型上,却并非如此。原因如下: - 在最大似然估计及相关策略上,很多概率计算的模拟非常难 - ...
  • xinzhangyanxiang
  • xinzhangyanxiang
  • 2016-11-13 19:59:45
  • 26221

【深度学习】生成对抗网络Generative Adversarial Nets

介绍非监督深度学习经典论文GAN(Generative Adversarial Nets)
  • shenxiaolu1984
  • shenxiaolu1984
  • 2016-08-17 19:05:51
  • 38858

生成对抗网络GANs理解(附代码)

对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的。 记录下自己的理解,日后忘记了也能用于复习。生成模型和判别模型理解对抗网络,首先要...
  • sxf1061926959
  • sxf1061926959
  • 2017-01-20 12:36:28
  • 31583

生成式模型 & 生成对抗网络——资料梳理(专访资料 + 论文分类)

文献整理   题目 主要内容                             GAN综述 【1...
  • Solomon1558
  • Solomon1558
  • 2016-08-27 23:52:50
  • 18022

生成式对抗网络GAN研究进展(一)

【前言】     本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。...
  • Solomon1558
  • Solomon1558
  • 2016-09-14 13:16:15
  • 42710

简述生成式对抗网络

本文主要阐述了对生成式对抗网络的理解,首先谈到了什么是对抗样本,以及它与对抗网络的关系,然后解释了对抗网络的每个组成部分,再结合算法流程和代码实现来解释具体是如何实现并执行这个算法的,最后通过给出一个...
  • paminy
  • paminy
  • 2017-03-10 17:43:38
  • 2088

GAN:生成式对抗网络介绍和其优缺点以及研究现状

本博文是转载自一篇博文,介绍GAN(Generative Adversarial Networks)即生成式对抗网络的原理以及GAN的优缺点的分析和GAN网络研究发展现状...
  • Bixiwen_liu
  • Bixiwen_liu
  • 2016-12-28 16:43:37
  • 14728

简单理解与实验生成对抗网络GAN

之前GAN网络是近两年深度学习领域的新秀,火的不行,本文旨在浅显理解传统GAN,分享学习心得。现有GAN网络大多数代码实现使用python、torch等语言,这里,后面用matlab搭建一个简单的GA...
  • on2way
  • on2way
  • 2017-05-26 21:31:49
  • 29860

对抗生成网络(GAN)学习笔记

生成模型与判别模型 判别模型:由数据直接学习决策函数Y=f(X)或条件概率分布P(Y|X)作为预测模型,即判别模型。判别方法关心的是对于给定的输入X,应该预测什么样的输出Y。 生成模型:由数据学习...
  • bingo_csdn_
  • bingo_csdn_
  • 2018-02-26 13:51:01
  • 161
    个人资料
    持之以恒
    等级:
    访问量: 2万+
    积分: 2692
    排名: 1万+
    文章存档
    最新评论