Python+OpenCV 识别Halcon标定板圆并将圆心坐标写入文件

话不多说直接上图:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
直接上代码:

# 加载环境包
import cv2
import numpy as np
# from PIL import  Image

# 图片简单处理


img = cv2.imread('C:\\Users\\Tony.Hsu\\Desktop\\hh_08.bmp')  # 读取图片

GrayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 灰度化

GrayImage = cv2.medianBlur(GrayImage, 25)  # 中值模糊,medianBlur()函数使用中值滤波器来平滑图像。

# 阈值处理,输入图片默认为单通道灰度图片

ret, th1 = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO)  # 固定阈值二值化

# threshold为固定阈值二值化

# 第二参数为阈值

# 第三参数为当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值(一般情况下,都是256色,所以默认最大为255)

# thresh_binary是基于直方图的二值化操作类型,配合threshold一起使用。此外还有cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV;
# cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

th2 = cv2.adaptiveThreshold(GrayImage, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 3, 5)

# adaptiveThreshold自适应阈值二值化,自适应阈值二值化函数根据图片一小块区域的值来计算对应区域的阈值,从而得到也许更为合适的图片。

# 第二参数为当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值(一般情况下,都是256色,所以默认最大为255)

# 第三参数为阈值计算方法,类型有cv2.ADAPTIVE_THRESH_MEAN_C,cv2.ADAPTIV
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TonyHsuM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值