弹性体的应变能密度

更多阅读:sppy.site

应变能密度的推导

考虑求解域 V V V ,弹性力学问题的平衡方程与边界条件为
{ ∇ ⋅ σ + b = ρ u ¨   i n   V n ⋅ σ = t   o n   ∂ V u = u ˉ   o n   ∂ V u (1) \tag{1} \begin{cases} \nabla\cdot\boldsymbol{\sigma}+\boldsymbol{b}=\rho\ddot{\boldsymbol{u}}&~\mathrm{in}~V\\[5pt] \boldsymbol{n}\cdot\boldsymbol{\sigma}=\boldsymbol{t}&~\mathrm{on}~\partial V\\[5pt] \boldsymbol{u}=\boldsymbol{\bar{u}}&~\mathrm{on}~\partial V^u \end{cases} σ+b=ρu¨nσ=tu=uˉ in V on V on Vu(1)

式中, ρ \rho ρ 为密度, b \boldsymbol{b} b 为体力, t \boldsymbol{t} t 为自然边界 ∂ V \partial V V 上的面力, u ˉ \boldsymbol{\bar{u}} uˉ 为强制边界 ∂ V u \partial V^u Vu 上的位移。

由热力学第一定律可知
δ V ε + δ K = δ W (2) \tag{2} \delta V_\varepsilon+\delta K=\delta W δVε+δK=δW(2)
式中, δ V ε \delta V_\varepsilon δVε δ K \delta K δK δ W \delta W δW 分别为应变能(势能)增量、动能增量、外力功增量。

动能增量

动能 K K K 等于
K ( u ˙ ) = ∫ V 1 2 ρ u ˙ ⋅ u ˙ d v (3) \tag{3} K(\dot{\boldsymbol{u}})=\int_V\frac{1}{2}\rho\dot{\boldsymbol{u}}\cdot\dot{\boldsymbol{u}}\mathrm{d}v K(u˙)=V21ρu˙u˙dv(3)
于是动能增量为
δ K = K ( u ˙ + δ u ˙ ) − K ( u ˙ ) = ∫ V 1 2 ρ ( u ˙ + δ u ˙ ) ⋅ ( u ˙ + δ u ˙ ) d v − ∫ V 1 2 ρ u ˙ ⋅ u ˙ d v = ∫ V [ ρ u ˙ ⋅ δ u ˙ + o ( δ 2 u ˙ ) ⏟ 高阶无穷小 ] d v = ∫ V ρ ( u ˙ ⋅ u ¨ ) δ t d v = ∫ V ρ u ¨ ⋅ δ u d v (4) \tag{4} \begin{aligned} \delta K&=K(\dot{\boldsymbol{u}}+\delta\dot{\boldsymbol{u}})-K(\dot{\boldsymbol{u}})\\[5pt] &=\int_V\frac{1}{2}\rho(\dot{\boldsymbol{u}}+\delta\dot{\boldsymbol{u}})\cdot(\dot{\boldsymbol{u}}+\delta\dot{\boldsymbol{u}})\mathrm{d}v-\int_V\frac{1}{2}\rho\dot{\boldsymbol{u}}\cdot\dot{\boldsymbol{u}}\mathrm{d}v\\[5pt] &=\int_V\big[\rho\dot{\boldsymbol{u}}\cdot\delta\dot{\boldsymbol{u}}+\underbrace{\bcancel{o(\delta^2\dot{\boldsymbol{u}})}}_{\text{高阶无穷小}}\big]\mathrm{d}v=\int_V\rho(\dot{\boldsymbol{u}}\cdot\ddot{\boldsymbol{u}})\delta t\mathrm{d}v\\[1pt] &=\int_V\rho\ddot{\boldsymbol{u}}\cdot\delta\boldsymbol{u}\mathrm{d}v \end{aligned} δK=K(u˙+δu˙)K(u˙)=V21ρ(u˙+δu˙)(u˙+δu˙)dvV21ρu˙u˙dv=V[ρu˙δu˙+高阶无穷小 o(δ2u˙) ]dv=Vρ(u˙u¨)δtdv=Vρu¨δudv(4)

外力功增量

对于任一微元体 V V V,其表面为 ∂ V \partial V V,外载荷在物体上做功为
δ W = ∫ V b ⋅ δ u d v + ∮ ∂ V t ⋅ δ u d s = ∫ V b ⋅ δ u d v + ∮ ∂ V n ⋅ σ ⋅ δ u d s (5) \tag{5} \begin{aligned} \delta W&=\int_V \boldsymbol{b}\cdot\delta\boldsymbol{u}\mathrm{d}v+\oint_{\partial V}\boldsymbol{t}\cdot\delta\boldsymbol{u}\mathrm{d}s\\[8pt] &=\int_V \boldsymbol{b}\cdot\delta\boldsymbol{u}\mathrm{d}v+\oint_{\partial V}\boldsymbol{n}\cdot\boldsymbol{\sigma}\cdot\delta\boldsymbol{u}\mathrm{d}s \end{aligned} δW=Vbδudv+Vtδuds=Vbδudv+Vnσδuds(5)

由高斯公式

∮ ∂ V n ⋅ F d s = ∫ V ∇ ⋅ F d v \oint_{\partial V}\boldsymbol{n}\cdot\boldsymbol{F}\mathrm{d}s=\int_V\nabla\cdot\boldsymbol{F}\mathrm{d}v VnFds=VFdv

式中,向量场 F = P i + Q j + R k \boldsymbol{F}=P\boldsymbol{i}+Q\boldsymbol{j}+R\boldsymbol{k} F=Pi+Qj+Rk

可得

δ W = ∫ V b ⋅ δ u d v + ∫ V ∇ ⋅ ( σ ⋅ δ u ) d v (6) \tag{6} \delta W=\int_V \boldsymbol{b}\cdot\delta\boldsymbol{u}\mathrm{d}v+\int_V\nabla\cdot(\boldsymbol{\sigma}\cdot\delta\boldsymbol{u})\mathrm{d}v δW=Vbδudv+V(σδu)dv(6)
考虑到
∇ ⋅ ( σ ⋅ δ u ) = ∂ i e i ⋅ ( σ j k e j e k ⋅ δ u l e l ) = δ i j δ k l ( σ j k δ u l ) , i = ( σ i l δ u l ) , i = σ i l , i δ u l + σ i l δ u l , i (7) \tag{7} \begin{aligned} \nabla\cdot(\boldsymbol{\sigma}\cdot\delta\boldsymbol{u})&=\partial_i\boldsymbol{e}_i\cdot(\sigma_{jk}\boldsymbol{e}_j\boldsymbol{e}_k\cdot\delta u_l\boldsymbol{e}_l)=\delta_{ij}\delta_{kl}(\sigma_{jk}\delta u_l)_{,i}\\[5pt] &=(\sigma_{il}\delta u_l)_{,i}=\sigma_{il,i}\delta u_l+\sigma_{il}\delta u_{l,i} \end{aligned} (σδu)=ie

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值