生成式人工智能认证(GAI认证)中文官网正式上线

在当今这个日新月异的数字化时代,人工智能(AI)正以前所未有的速度改变着我们的生活和工作方式。其中,生成式人工智能作为AI领域的一颗璀璨新星,正逐渐成为职场新宠。然而,随着其应用的普及,如何标准化、系统化地学习并掌握这一技术,成为了众多专业人士和求学者面临的难题。近日,全球终身学习公司培生(Pearson)推出的生成式人工智能认证(GAI认证)中文官网正式上线,为这一难题提供了解决方案。

什么是GAI认证?

GAI认证,全称生成式人工智能(Generative AI  Foundations)认证,是由全球知名的终身学习公司培生(Pearson)推出的。这个认证旨在为职场人士、学生以及所有对AI感兴趣的朋友提供一套全面且实用的生成式人工智能技能培训框架及认证。

通过GAI认证,你不仅能够紧跟技术前沿,掌握生成式人工智能的核心应用能力,还能在求职市场上大放异彩,成为企业争相抢聘的香饽饽。

GAI认证的价值所在

那么,GAI认证到底能给你带来什么好处呢?

助力职场晋升:对于在职人员来说,GAI认证是对自身能力的有力证明。它表明你具备AI应用能力,能够助力你在职场中晋升加薪,拓宽职业发展空间。

系统掌握核心知识:GAI认证涵盖了生成式AI的方法、模型及快速工程改进基础。通过考试,你将系统掌握这些核心知识和技能,为未来的职业发展打下坚实的基础。

增强求职竞争力:在当今就业市场中,生成式人工智能技能认证备受青睐。拥有GAI认证,将让你在求职者中脱颖而出,增加被企业录用的机会。

培养道德与合规意识:GAI认证还涵盖AI社会影响认知,包括偏见与隐私等内容。这将帮助你遵循道德法律,规避风险,合法合规地运用AI技术。

GAI认证的课程内容

GAI认证的课程由Pearson旗下Certiport专业的内容团队、生成式AI专业人士和教育工作者以及心理测量学家David  Lauret博士合作开发,旨在支持生成式人工智能的能力标准化基准。课程内容广泛且全面,包括:

生成式人工智能方法和方法论:你将探索并熟悉各种生成式人工智能工具,理解文本和图像模型如何生成输出,以及大型语言模型(LLMs)背后的训练原理。

提示优化:在基础知识的基础上,你将学习如何改进提示以实现更有针对性的结果,包括尝试不同类型的提示技术、使用反向提示和验证输出的准确性。

基础提示工程:你将深入了解提示工程的基本原理,学习如何创建生成期望内容结果的提示,并测试提示以生成文本、图像和视频输出。

伦理、法律与社会影响:在深入学习如何负责任地运用生成式人工智能的过程中,你将重点探讨该技术可能带来的偏见和法律层面上的影响,以及数据隐私的重要性。

为什么选择GAI认证?

随着人工智能技术的发展,越来越多的企业和个人开始将AI融入日常工作流程之中。根据微软和Linkedin发布的2024工作趋势指数年度报告,76%的市场营销专业人士以及许多其他非IT岗位的工作者,如记者和教师等,已经开始使用生成式AI工具。这意味着,掌握生成式人工智能技能已经成为一项广泛必备的技能。

然而,在这一过程中,许多用户遇到了各种挑战与难题,如缺乏系统性及标准的学习资源、市场上碎片化的学习资料难以满足系统化学习需求等。而GAI认证正是为了解决这些问题而诞生的。它提供了全面且系统的课程内容,帮助你轻松掌握生成式人工智能的核心技能。

如何获取GAI认证?

想要获取GAI认证其实非常简单。你只需要访问生成式人工智能认证(GAI认证)中文官网,按照官网上的指引进行报名和考试即可。考试形式为在线考试,相信只要你认真备考,一定能够顺利通过考试,获得这张宝贵的GAI认证证书!

(注:在这个AI时代,掌握生成式人工智能技能已经成为一种趋势和必然。而GAI认证正是你通往成功之路的钥匙。无论你是职场新人还是在职人士,无论你是学生还是技术爱好者,都可以通过GAI认证来提升自己的AI应用能力,为未来的职业发展打下坚实的基础。)

### 生成式人工智能与通用人工智能的概念 #### 生成式人工智能概念 生成式人工智能 (Generative Artificial Intelligence, GAI) 属于人工智能的一个特定领域,专注于通过模拟学习过程来创造全新的数据实例。这些新实例不仅限于模仿已有的模式,还能展现出一定程度上的创新性[^2]。 #### 通用人工智能概念 通用人工智能 (Artificial General Intelligence, AGI) 描述的是一个理论化的高级智能体系,该类系统具备广泛的任务执行能力和自我改进特性,在众多复杂环境中均能表现出超越人类水平的表现力。AGI 能够理解和应对多种类型的挑战,并且可以根据环境变化调整自身的策略和技术手段[^1]。 ### 两者间的区别 | 特征 | 生成式人工智能 | 通用人工智能 | | --- | -------------- | -------------| | **目标** | 创造新颖的数据样本,如图片、音乐片段或自然语言文本等 | 实现全面的人工智能形态,能够在任何给定的情境下完成任务并持续进步 | | **范围** | 主要集中在内容创作方面,特别是媒体和娱乐产业的应用场景 | 涵盖几乎所有可能的知识域和服务行业,包括但不限于科学研究、医疗保健和社会治理等领域 | | **自主程度** | 需要预先定义好的框架指导其运作;尽管可以生成看似随机的结果,但仍受限于训练数据集的质量和多样性 | 具备高度自治的能力,理论上可独立解决问题而不必依赖外部指令 | ### 应用案例 #### 生成式人工智能应用 - 自动化新闻写作工具可以通过分析大量现有文章来自动生成关于体育赛事报道或其他事件描述; - 图像合成软件能够依据用户的简单草图快速渲染出逼真的风景画作或是产品外观设计稿; - 游戏开发人员利用此技术为虚拟世界增添更加生动的人物角色形象以及动态背景效果。 #### 通用人工智能潜在应用场景 一旦实现了真正的AGI,则几乎所有的职业岗位都可能会受到影响——无论是医生诊断疾病还是律师准备法律文件,甚至是艺术家构思作品创意,都将有更为高效精准的方式得以呈现。不过值得注意的是,当前阶段距离真正意义上的AGI还有很长一段路要走,现阶段讨论更多的是如何逐步接近这一理想状态下的功能实现。 ```python # Python代码示例:使用GANs生成手写数字图像 import tensorflow as tf from tensorflow.keras import layers def make_generator_model(): model = tf.keras.Sequential() model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) ... return model generator = make_generator_model() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值