2-sat 相关问题总结

本文总结了2-SAT问题的各种元素关系,并介绍了如何判断是否有解。通过Tarjan算法求强联通,若x与~x染色相同则无解,否则有解。对于字典序最小解,可以通过DFS暴力枚举实现。而求任意解,直接使用Tarjan算法求强连通及拓扑排序。此外,还提到了相关论文和资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.元素关系有以下11种

A[x]
NOT A[x]
A[x] AND A[y]
A[x] AND NOT A[y]
A[x] OR A[y]
A[x] OR NOT A[y]
NOT (A[x] AND A[y])
NOT (A[x] OR A[y])
A[x] XOR A[y]
NOT (A[x] XOR A[y])
A[x] XOR NOT A[y] 

And 结果为1:建边 ~x->x, ~y->y (两个数都为1)

And 结果为0:建边 y->~x , x->~y(两个数至少有一个为0)

OR  结果为1:建边 ~x->y , ~y->x(两个数至少有一个为1)

OR  结果为0:建边 x->~x , y->~y(两个数都为0)

XOR 结果为1:建边 x->~y , ~x->y , ~y->x , y -> ~x (两个数一个为0,一个为1)

XOR 结果为0:建边 x->y , ~x->~y , y->x ~y->~x(两个数同为1或者同为0)

对于一般判定是不是有解的情况,我们可以直接采用tarjan算法求强联通,然后缩点,如果x与~x染色相同,说明无解,否则有解。有的时候,可能需要用二分+tarjan算法。例如:hdu3622,hdu3715等。

求字典序最小解

这里可以参看:http://www.cppblog.com/MatoNo1/archive/2011/07/13/150766.html 

不过这个太麻烦了,我们可以直接暴力枚举DFS,效率也是很高的。

首先将所有的点都置为为染色,然后我们从第一个点开始DFS染色,我们先尝试将i染成红色(答案中的颜色),将~i染成蓝色,然后dfs i的所有后继并染色,如果对于后继j没有染色,那么将j然后为红色,~j染成蓝色。如果后继j已经被染成蓝色,则说明不能选则i,如果j已经染成红色,则说明可以。那么这些后继就可以被选择。

如果选择i的时候失败了,那么必定要选择~i,如果也失败,则说明无解。否则按次序选取下一个未被染色的点。时间复杂度O(nm)。

杭电1814那个题目就是要输出最小字典序解。用第二种办法跑了500ms左右,而第一种算法则跑了3000ms左右.改到HOJ1917(只要求任意解)去测试,DFS版也只跑了0.65s的样子,而另一个则跑了3000+ms.并且前面一个写起来比较蛋碎。。。具体的程序见下。

求任意解

直接tarjan求强连通,缩点再加拓扑排序。O(M)

论文可以参看赵爽的2-SAT解法浅析论文与对称性解决2-sat的PPT

Peaceful Commission

/*
    author    : csuchenan
    prog      : hdu 1814
    algorithm : 2-sat 暴力
    2012-10-26 17:36:16	Accepted	1814	500MS	1044K	1550 B
*/
#include <cstdio>
#include <cstring>
#include <vector>
using std::vector;
#define R 1
#define B 2
#define W 0
const int maxn = 16005;
int col[maxn];
int cnt, ans[maxn];
vector<int> G[maxn];
int n, m;
bool read(){
    if(scanf("%d%d", &n, &m)==EOF)
        return false;
    n = n<<1;
    for(int i = 0; i < n; i ++)
        G[i].clear();
    while(m--){
        int a, b;
        scanf("%d%d", &a, &b);
        a --;
        b --;
        G[a].push_back(b^1);
        G[b].push_back(a^1);
    }
    return true;
}

bool dfs(int v){
    int size = G[v].size();
    if(col[v] == B)
        return false;
    if(col[v] == R)
        return true;
    col[v] = R;
    col[v^1] = B;
    ans[cnt ++] = v;
    for(int i = 0; i != size ; i ++){
        int u = G[v][i];
        if(!dfs(u))
            return false;
    }
    return true;
}

bool solve(){
    memset(col, 0, sizeof(col));
    for(int i = 0; i < n; i ++){
        if(col[i])
            continue;
        cnt = 0;
        if(!dfs(i)){
            for(int j = 0; j < cnt; j ++){
                col[ans[j]] = W;
                col[ans[j]^1] = W;
            }
            if(!dfs(i^1))
                return false;
        }
    }
    return true;
}

int main(){
    while(read()){
        if(solve()){
            for(int i = 0; i < n; i ++){
                if(col[i]==R)
                    printf("%d\n", i+1);
            }
        }
        else{
            printf("NIE\n");
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值