StarRocks_labs
码龄3年
关注
提问 私信
  • 博客:186,194
    社区:170
    视频:530
    186,894
    总访问量
  • 216
    原创
  • 11,840
    排名
  • 882
    粉丝

个人简介:Linux 基金会项目 StarRocks 是数据分析新范式的开创者、新标准的领导者。面世三年来,StarRocks 一直专注打造世界顶级的新一代极速全场景 MPP 数据库,帮助企业构建极速统一的湖仓分析新范式,是实现数字化转型和降本增效的关键基础设施。 StarRocks 持续突破既有框架,以技术创新全面驱动用户业务发展。当前全球超过 300 家市值 70 亿元以上的头部企业都在基于 StarRocks 构建新一代数据分析能力,包括腾讯、携程、平安银行、中原银行、中信建投、招商证券、大润发、百草味、顺丰、京东物流、TCL、OPPO 等,并与全球云计算领导者亚马逊云、阿里云、腾讯云等达成战略合

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2022-07-04
博客简介:

StarRocks的博客

查看详细资料
博客首页
  • 原力等级
    当前等级
    5
    当前总分
    1,819
    当月
    64
个人成就
  • CSDN官方账号
  • 获得900次点赞
  • 内容获得9次评论
  • 获得1,141次收藏
  • 代码片获得110次分享
创作历程
  • 6篇
    2025年
  • 50篇
    2024年
  • 74篇
    2023年
  • 86篇
    2022年
成就勋章
TA的专栏
  • 社区投稿
    1篇
  • 社区动态
    4篇
  • 源码解析
    6篇
兴趣领域 设置
  • 大数据
    hadoophivespark数据仓库etl
TA的社区
  • StarRocks
    3 成员 4 内容
    创建者
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

StarRocks 3.4 发布--AI 场景新支点,Lakehouse 能力再升级

自 StarRocks 3.0 起,社区明确了以 Lakehouse 为核心的发展方向。Lakehouse 的价值在于融合数据湖与数据仓库的优势,能有效应对大数据量增长带来的存储成本压力,做到 single source of truth 的同时继续拥有极速的查询性能,同时也为 AI 时代的多样化数据需求提供可扩展的高效访问能力。构建 Lakehouse 后,你将拥有开放统一的数据存储与基于一份数据,支持多样化的 workload,服务企业 AI、BI 的数据应用,进而实现的业务价值。
原创
发布博客 2025.01.21 ·
1130 阅读 ·
10 点赞 ·
0 评论 ·
16 收藏

湖仓进化,极速统一|StarRocks 2024 社区年度报告

延伸阅读:Lakehouse 白皮书 | 从理论到落地的现代数据架构升级指南StarRocks 开源三周年:初心不忘,征程不止!StarRocks Awards 2024 年度贡献人物StarRocks 培训课程重磅上线!专家出品,助你升级打怪不走弯路!更多交流,联系我们:StarRocks
原创
发布博客 2025.01.21 ·
123 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

从 Spark 到 StarRocks:实现58同城湖仓一体架构的高效转型

在使用 StarRocks 的过程中,我们从实践中总结出了关于性能、稳定性和易用性的关键经验。
原创
发布博客 2025.01.20 ·
1654 阅读 ·
21 点赞 ·
0 评论 ·
17 收藏

StarRocks Awards 2024 年度贡献人物

这个奖项分为两个主要类别:以代码贡献为主的“DEV”类和以布道为主的“Advocacy”类,并根据加入社区的时间与贡献分成了 Master 与 Knight 两个等级。在过去一年,StarRocks 在 Lakehouse 与 AI 等关键领域取得了显著进步,其卓越的产品功能极大地简化和提升了数据分析的效率,使得。以下是 StarRocks Awards 2024 的获奖者名单及得奖人们给社区的一些话,期待明年看到更多新面孔出现在这份荣誉榜上!
原创
发布博客 2025.01.09 ·
599 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

直播预告|StarRocks 3.4,打造 AI 时代的智能数据基座,应用场景全面扩展

随着新年的到来,StarRocks 3.4 即将上线,为 AI Workload 和更多应用场景提供强大支持!此次升级聚焦于提升 AI 场景支持,并扩展更多应用场景,全方位提升数据分析体验。1 月 15 日(周三)晚 19:00,我们特别邀请了镜舟科技的 PM 李蛟,与大家一起深入解读 3.4 版本的亮点功能。优化性能,提升易用性,进一步完善对 Iceberg 和 Delta Lake 的支持。:支持优雅退出、checkpoint,备份与恢复功能更全面。统一分区设计,高并发实时导入与批量导入更易用。
原创
发布博客 2025.01.07 ·
215 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

40% 降本:多点 DMALL x StarRocks 的湖仓升级实战

在 StarRocks 的升级之路中,我们曾尝试压缩单个 CN Pod 的内存,扩大 CN Pod 的数量,以提升 Kubernetes Node 的装箱率。但测试后发现,这种优化方式并不适用于 StarRocks。即使是在 Kubernetes 部署模式下,StarRocks 也需要配置较大内存和 CPU 的 Pod 来保证服务质量。多点 DMALL 专注于 To B 业务,在“降本增效”的大背景下,客户对于成本和价值的敏感度更高。
原创
发布博客 2025.01.03 ·
985 阅读 ·
7 点赞 ·
0 评论 ·
21 收藏

StarRocks 存算分离在得物的降本增效实践

此次迁移达成了预期的成本和性能的收益目标,也拓展了集群未来的成长空间,也让业务团队和引擎团队都更加的了解 StarRocks,收获大量迁移经验,为将来迁移其他业务提供了有说服力的范例。在迁移过程中,我们与社区保持了紧密的联系,获得了社区大量帮助,也贡献了大量 patch 给社区,减少社区其他人需要踩的坑。在我们得物内部 StarRocks 的未来规划中,我们也将继续深度参与社区。StarRocks。
原创
发布博客 2024.12.27 ·
1793 阅读 ·
15 点赞 ·
0 评论 ·
30 收藏

深入解析 StarRocks 物化视图:全方位的查询改写机制

本文主要介绍了 StarRocks 中物化视图查询改写的技术原理,从优化器的执行流程,到对不同查询的处理 Join、Aggregation、View、Union 等,以及内部视角的反省和外部视角的对比。希望本文能够对关心技术原理的读者有所帮助,对 StarRocks 的用户带来更多的技术洞察和业务启发
原创
发布博客 2024.12.20 ·
993 阅读 ·
12 点赞 ·
0 评论 ·
17 收藏

Lakehouse is ALL you need

回到今天的主题——。对于数据工程师:无需维护复杂的 ETL Pipeline对于数据分析师:可以实时高效地在数据湖上进行探索和分析对于数据科学家:直接访问数据湖上的开放数据,构建 AI 应用对于企业的经营管理者:通过简单高效的数据分析,实时推动企业经营决策Lakehouse 的确拥有非常大价值,而 StarRocks 作为最适合 BI 数据分析的 Lakehouse 引擎,可以让数据湖中的数据高效地转化为价值。正是你们的努力,使得 StarRocks 不断成长和进步。
原创
发布博客 2024.12.17 ·
1709 阅读 ·
9 点赞 ·
0 评论 ·
9 收藏

StarRocks Summit Asia 2024 全部议程公布!

随着企业数字化转型深入,云原生架构正成为湖仓部署的新标准。弹性扩展、资源隔离、成本优化,帮助企业在云上获得了更高的灵活性和效率。与此同时,云原生架构也为湖仓与 AI 的深度融合奠定了基础。在过去一年,湖仓技术与 AI 的结合催生了许多创新应用。从实时特征工程到大规模向量检索,从智能查询优化到自适应资源调度,湖仓架构正在和 AI 碰撞出更多新场景、新故事,StarRocks Summit Asia 2024 分论坛将带为你揭晓这些创新洞察和成熟实践。
原创
发布博客 2024.11.14 ·
605 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

StarRocks 在 Shopee 数据产品的实践

StarRocks 是一款 SQL 查询引擎,能够在数据湖仓上提供数据仓库级别的性能。StarRocks 是一款出色的分析引擎,具有强大的功能,例如向量化执行引擎、基于成本的优化器、数据缓存和具有透明查询重写能力的物化视图。除了其自管理的专有表格式外,它还支持直接查询大多数流行的数据湖表格式,如 Hive、Iceberg、Delta Lake 和 Hudi。借助其内置的目录功能,只需一个创建外部目录的 SQL 语句,即可立即部署 StarRocks 并查询数据湖表。
原创
发布博客 2024.11.07 ·
1103 阅读 ·
8 点赞 ·
0 评论 ·
12 收藏

Paimon x StarRocks 助力喜马拉雅构建实时湖仓

首先,简要介绍一下喜马拉雅的业务。我们的直播业务主要分为音频直播、视频直播以及多人娱乐厅三大类。音频直播:由专业主播为用户提供有声书、知识讲座等内容。视频直播:与市面上多数视频直播类似,包括主播表演和游戏直播等内容。多人娱乐厅:为用户提供一个互动交流的平台,他们可以与主持人共同参与讨论或活动。
原创
发布博客 2024.10.31 ·
1002 阅读 ·
13 点赞 ·
0 评论 ·
16 收藏

啊?原来社区大佬们是这样的人!

你们认识的社区大佬们都是怎样的?在社区里热心回答用户的问题、时常在各平台输出干货或是提 PR 的手速快的惊人?今天程序员节我们不聊代码,我们要来揭秘大佬们鲜为人知的一面,分享他们在生活中的那些隐藏技能:在高强度的工作下如何成为时间管理大师?如何狂减 90 斤,在短短一年间成为健身达人?他们是如何在开源社区里不断成长?与来自世界各地的开发者交流的时候又有哪些文化/语言上的趣事?在 AI 时代下,大佬们是如何保持高效学习的?
原创
发布博客 2024.10.25 ·
364 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

洞见数据未来,StarRocks Summit Asia 2024 即将启幕!

数据量和数据类型的需求飞速上涨,我们不仅需要将历史上各种基础设施中的数据进行分析使用,还要关注性能、灵活性、性价比,以及确保单一可信数据源。本届峰会,我们将深入探讨 "Data + AI" 时代下的极速统一架构—— Lakehouse 在各行业的应用与实践、云原生架构优势和更多创新应用场景,探索数据的无限可能。StarRocks 社区现诚挚地邀请在数据库技术、AI 领域内的企业机构、社区和媒体伙伴一起共建共创,推进数据与 AI 生态和行业交流和技术进步。在 AI 时代,我们需要怎样的数据基础软件?
原创
发布博客 2024.10.24 ·
365 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

StarRocks Lakehouse 快速入门——Hive Catalog

Apache Hive 是一个分布式、容错的数据仓库系统,能够实现大规模的分析。Hive Metastore (HMS) 提供了一个元数据存储库,可以轻松分析这些元数据以做出基于数据的决策,因此它是许多数据湖架构中的关键组件。Hive 构建于 Apache Hadoop 之上,并通过 HDFS 支持在 S3、ADLS、GS 等存储上的数据管理。Hive 允许用户使用 SQL 读取、写入和管理 PB 级的数据。
原创
发布博客 2024.10.17 ·
820 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

七猫如何用StarRocks 打造用户增长新引擎?

七猫的数仓团队主要是承接七猫各条业务线的离线数据开发、实时数据开发、指标建设、数据治理等工作。我加入七猫大约两年时间,加入后第一件事就是引入 StarRocks。现在七猫有五套 StarRocks 集群在生产环境投入了使用。据不完全统计,数据治理前离线数据加实时数据,总数据量大约在 20PB 左右。那我们是如何维护和管理这些数据的呢?下面会通过一张简化版的数据架构图来介绍。这些数据会通过日志埋点的形式上报到日志接收系统。日志接收系统会将用户行为数据和广告数据进行分流,分别存在两个 Kafka 里面。
原创
发布博客 2024.09.27 ·
1158 阅读 ·
18 点赞 ·
0 评论 ·
17 收藏

饿了么基于Flink+Paimon+StarRocks的实时湖仓探索

作者:王沛斌@饿了么本文整理自饿了么大数据架构师、Apache Flink Contributor 王沛斌老师在8月3日 Streaming Lakehouse Meetup Online(Paimon x StarRocks,共话实时湖仓架构)上的分享。主要分为以下三个内容:1. 饿了么实时数仓演进之路2. 实时湖仓方案选型与探索3. 实时湖仓规划及展望。
原创
发布博客 2024.09.26 ·
1631 阅读 ·
13 点赞 ·
0 评论 ·
23 收藏

StarRocks 培训课程重磅上线!专家出品,助你升级打怪不走弯路!

今年已过了大半,大家的学习进度条进展如何?如果你对 StarRocks 的基础知识还有疑惑,或在寻找系统性的学习方法,不必灰心,因为 Rocky 要来助你一臂之力啦!
原创
发布博客 2024.09.10 ·
505 阅读 ·
4 点赞 ·
2 评论 ·
6 收藏

StarRocks Lakehouse 快速入门——Apache Iceberg

Apache Iceberg 是一种为大规模、复杂数据集设计的开源表格式,这些数据集跨越了 PB 级别的数据。最初作为 Netflix 管理海量表的解决方案,于 2018 年在 Apache 孵化器下开源,并在 2020 年毕业。Apache Iceberg 作为一种复杂的开放表格式,位于计算引擎(如 Flink 和 Spark)和存储格式(如 ORC、Parquet 和 Avro)之间。它作为一个中间件层,抽象了底层数据存储格式的复杂性,并向计算框架上层提供了统一的表格语义。
原创
发布博客 2024.09.06 ·
1560 阅读 ·
27 点赞 ·
0 评论 ·
13 收藏

云原生主键模型:高效、弹性,省钱又省心

无论是大批导入或是小批实时导入,云原生主键索引性能与本地磁盘索引性能基本持平。在弹性调度场景中,得益于云原生的架构,云原生持久化索引的延迟性能提升达到了本地磁盘持久化索引的 10 倍。
原创
发布博客 2024.09.02 ·
827 阅读 ·
23 点赞 ·
0 评论 ·
30 收藏
加载更多