快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
我需要开发一个智能制造项目造价智能估算与三维可视化系统,集成AI的能力,帮助造价工程师快速生成精准的造价估算报告和三维可视化展示。 系统交互细节: 1. 输入阶段:工程师上传智能制造项目的设计图纸、材料清单和工艺要求等基础数据 2. 数据识别:系统使用OCR文字识别能力,自动提取图纸中的关键参数和材料信息 3. 造价估算:LLM文本生成能力分析历史造价数据和当前市场行情,生成详细的造价估算报告 4. 三维可视化:根据设计图纸和造价数据,文生图功能自动创建项目的三维可视化模型,标注关键造价节点 5. 输出整合:系统将造价报告和三维模型整合为交互式PDF文档,支持多维度查看和标注 注意事项:系统需要支持多种智能制造项目类型,提供直观的成本对比和优化建议功能。 - 点击'项目生成'按钮,等待项目生成完整后预览效果

最近接到一个智能制造项目的造价控制需求,传统手工估算效率低、可视化展示不足的问题一直困扰着团队。尝试用AI技术搭建了一套智能造价估算系统,过程中发现InsCode(快马)平台能大幅简化开发流程,分享几个关键环节的实践经验:
1. 多源数据智能处理
系统首先要解决设计图纸、材料清单等非结构化数据的识别问题。通过OCR技术可以自动提取图纸中的尺寸参数、设备型号等关键信息,比人工录入效率提升80%以上。特别要注意不同CAD图纸格式的兼容性处理,建议先做标准化预处理。
2. 动态造价模型构建
核心算法模块需要处理三类数据源: - 实时市场价格数据(通过API获取) - 历史项目成本数据库 - 当前项目的工艺参数
采用分层加权算法,基础材料成本用市场价×用量,人工费用按工艺复杂度系数调整,最后通过机器学习模型校验合理性。测试发现对钣金加工类项目误差能控制在3%以内。
3. 三维可视化实现技巧
可视化部分有三个创新点: 1. 自动将2D图纸转化为三维线框模型 2. 用不同颜色标注高成本组件(如红色表示超预算20%以上) 3. 支持点击查看任一部件的详细造价构成
测试时发现渲染大量零件会导致浏览器卡顿,最终采用LOD(细节层次)技术动态加载模型细节。
4. 报告生成优化
整合报告时有几个实用功能: - 关键指标自动高亮(如成本超支项) - 多方案对比雷达图 - 可交互的3D模型嵌入
PDF生成建议用矢量图形格式,避免缩放时失真。通过用户反馈迭代了三次才确定最优版式。
5. 系统部署心得
整套系统在InsCode(快马)平台上部署特别顺畅: 1. 前端用React实现交互界面 2. 后端Python处理计算逻辑 3. 数据库存储项目历史数据

点击部署按钮就能生成在线可访问的地址,省去了服务器配置的麻烦。实测从代码完成到上线只用了7分钟,比传统方式快10倍不止。
这套系统上线后,项目造价评估时间从原来的3天缩短到2小时,三维可视化还帮助发现了3处设计冗余。建议同行们试试这种AI+低代码平台的组合方案,确实能突破传统工作模式的效率瓶颈。
快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
我需要开发一个智能制造项目造价智能估算与三维可视化系统,集成AI的能力,帮助造价工程师快速生成精准的造价估算报告和三维可视化展示。 系统交互细节: 1. 输入阶段:工程师上传智能制造项目的设计图纸、材料清单和工艺要求等基础数据 2. 数据识别:系统使用OCR文字识别能力,自动提取图纸中的关键参数和材料信息 3. 造价估算:LLM文本生成能力分析历史造价数据和当前市场行情,生成详细的造价估算报告 4. 三维可视化:根据设计图纸和造价数据,文生图功能自动创建项目的三维可视化模型,标注关键造价节点 5. 输出整合:系统将造价报告和三维模型整合为交互式PDF文档,支持多维度查看和标注 注意事项:系统需要支持多种智能制造项目类型,提供直观的成本对比和优化建议功能。 - 点击'项目生成'按钮,等待项目生成完整后预览效果
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

被折叠的 条评论
为什么被折叠?



