论文笔记Three-Dimensional Liver Image Segmentation Using Generative Adversarial Networks

基于特征恢复的生成对抗网络的三维肝脏图像分割

Frontiers in Medicine 2022

       在这项研究中,针对原始3D U-Net网络分割精度低的问题,提出了一种基于3D U-Net的改进网络。此外,为了解决由于难以获取标记的3D数据而导致训练数据不足的问题,将改进的3D U-Net网络嵌入到生成对抗网络的框架中,建立了半监督的3D肝脏分割优化算法。最后,考虑到利用随机噪声作为输入生成的3D腹部假图像质量较差的问题,设计了基于特征恢复方法的深度卷积神经网络(DCNN的主要限制之一是需要大量的标记数据进行训练)来生成更逼真的假图像。

肝组织的结构和CT成像过程中的一些问题

1.由于患者的性别、年龄和体型的不同,个体患者肝脏的形状和大小在其CT图像中的外观有所不同;

2.腹部器官多,结构致密,组织密度与肝脏相似;

3.患者肝脏中病变区域的面积大小不固定,位置随机,在肝脏识别过程中会对网络造成干扰;

4.CT图像在成像过程中存在对噪声敏感、金属伪影、体动等问题,导致肝脏区域灰度值受成像环境的影响而发生变化,导致肝脏灰度不均匀。

针对腹部CT图像中肝脏分割的难点,通过对腹部CT图像进行预处理,提高了CT图像中肝脏的对比度,提高了肝脏的识别能力。此外,半监督学习算法减少了对大量标记数据的需求,利用 GAN 生成假图像,通过结合标记的CT图像以半监督的方式训练网络,通过扩展数据集可以进一步提高算法的肝脏分割性能。

数据预处理

1.CT值截断:剪裁用于改善肝脏和其他组织之间的对比度,经过裁剪处理,网络能更快地收敛。另外,本文主要是分割肝脏,对骨结构信息不敏感。通过裁剪CT图像的强度范围,可以减少骨骼和其他组织的干扰。

2.CT值归一化:数据集中的CT图像是从多个图像采集源获得的,具有不同的扫描设备和成像环境,这导致了不同的成像效果和灰度,这种灰度级的差异对样本的训练过程影响较大。因此,在将 CT 值转换为灰度值的过程中,需要尽可能地消除成像差异的影响。

3.灰度值区间映射:设置归一化,便于训练过程的计算和监督。在归一化阶段,我们根据RGB值的范围将归一化后的值乘以255,转换为整数。而且,低于零的归一化值是肉眼不可见的,因此需要将其乘以一个合理的值,以使图像的对比度更加清晰。从而将[-200, +200]的CT值映射到[0, 255]的灰度值区间。

Squeeze and Excitation (SE) Module

       原始的3D U-Net模型仅使用卷积来提取特征,本文增加SE结构提取图像特征,可以根据特征图像的值对每个特征通道进行加权,增加重要特征的权重,降低不相关特征的权重,从而提高特征提取的效果SE结构是一种基于特征通道加权的注意力机制;本文将3D SE结构和卷积层结合起来作为基本的卷积模块,称为SE模块(SE模块由两个卷积层组成:第一个卷积层将输入特征图的分辨率和通道数调整为特定大小,同时可以压缩特征通道以减少计算量。第二个卷积层与SE结构结合使用)

Pyramid Pooling Module

       3D U-Net模型仅使用三个下采样来获得3D图像的感受野,并通过跳跃连接提升浅层特征的作用;我们引入了金字塔池化模块来获得更大的感受野,金字塔池化模块应用多尺度池化操作来获取和融合多尺度特征信息,可以提高模型对多尺度感受野选择的自由度;它还可以在不影响原始特征的情况下添加特征的多尺度信息;此外,为了将原始特征图像与不同尺度的池化结果拼接,需要使不同尺度的池化结果与原始特征图大小相同,该模块使每个位置都可以获取多个范围的信息,这样,最大范围可以直接达到全局大小,模块可以快速获取更多种类的信息(在该网络中,金字塔池化模块被添加在整个网络中分辨率最小的编码路径的末尾)        

 

Deep Convolutional Generative Adversarial Networks (DCGAN)

       DCGAN是一种结合了深度卷积神经网络和生成对抗网络的无监督学习算法,DCGAN的设计思想是在原有网络框架的限制上,实现更强大的生成模型。DCGAN的生成器通过随机噪声的卷积和上采样生成假图像,广泛用于生成2D图像的任务。为了生成3D图像,使用随机噪声的效果很差,因为很难通过深度神经网络学习3D图像分布。使用噪声作为输入学习高维图像分布非常慢,而使用3D U-Net网络作为判别器在训练过程中收敛速度非常快,这种矛盾会导致梯度分散的问题。

       此外,我们使用随机噪声来生成CT图像。然而,CT图像的轮廓很难生成,更不用说内部分布了。为了生成更逼真的3D图像,需要添加更多真实的图像分布信息来代替随机噪声,这样可以加快生成器的学习速度。

       在本文中,我们设计了一种基于特征恢复方法的卷积神经网络。通过提取改进后的3D U-Net网络生成的特征图,随机选择一部分特征图作为神经网络的输入,原因如下:恢复所有特征图是特征提取的逆过程,得到的分布与真实图像相同。如果选择了特征图的一部分,生成器将学习真实的图像分布并完成缺失的部分。而且,得到的图像与真实图像不同,增加了图像的多样性,达到了扩展数据集的目的。

       由于特征图是随机选择的,缺失部分也是随机的,因此可以训练生成器在任意位置恢复真实图像。另外,之所以使用特征图,而不是部分缺失的真实图像,是因为真实图像包含很多无用信息,导致生成器收敛缓慢。通过上采样和卷积操作,得到与真实图像切片大小相同的假图像。之后,分别通过改进的3D U-Net网络提取假图像和真实图像的特征图,并将两个特征图之间的平均差作为损失。然后,通过多次迭代更新生成器的网络参数,使生成器更好地恢复特征图,也使假图像更接近真实图像。


                         生成假图像的流程图


                                   判别器训练流程图

 

 
                                        生成器训练流程图

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值