QR分解的几何解释,并荐书《Algebra, Topology, Differential, Calculus, and Optimization Theory》

一、简介

首先,我在这里推荐一本好书——《Algebra, Topology, Differential, Calculus, and Optimization Theory for Computer Science and Engineering》 【1】 ,该书作者是 Jean Gallier 【2】 教授。老爷子70多岁,就职于宾西法利亚大学 计算机与信息学院,可说本书是他将几十年的教学经验凝聚之精华,总共1900页,分为 9 个大部分,54章,涵盖了线性空间、代数几何、代数、拓扑、微分方程、最优化理论、机器学习等多个方面的数学基础,没有几十年功力实难驾驭自如。书中详细地介绍了计算机科学所需的各门类数学基础,不仅是从本科的基础高等数学到各领域专业前沿研究的重要过渡,也为继续学习更为高深的数学做了一定的铺垫,以及指明了方向。最难得的是,这本大部头是开源的,我把这个资源列在了文章后面的参考文献【1】中,真希望能找到一同学习的同学,可以聊聊学习心得,相互启发、帮助,共同进步。
以下博文是我依据该书第12章(《QR-Decomposition for Arbitrary Matrices》)的内容,结合自己的理解写成,不对之处,还望不吝赐教。

二、QR分解

把矩阵分解为形式比较简单或具有某种特性的一些矩阵的乘积,称之为矩阵分解,它在矩阵理论的研究与应用中占据着非常重要的地位。因为一方面,这些分解式的特殊形式能够反映出原矩阵的某些数值特征;另一方面,这些分解的方法与过程为数值计算提供了理论依据。矩阵 QR 分解是将任意矩阵 A A A 分解为两个矩阵相乘,如: A = Q R A = QR A=QR,其中 Q Q Q 是规范正交矩阵(Orthonormal Matrix), R R R 是上三角矩阵(Upper Triangular Matrix)。QR分解在解决最小二乘问题、特征值计算方面都有广泛应用。【3】
在【4】中,给出了QR分解的一般证明(原书 2.6.1 定理),它是基于 Gram-Schmidt 正交化给出的:
定理1:QR分解
如果 A ∈ M n , m A\in M_{n,m} AMn,m n ≥ m n\ge m nm,那么存在具有标准正交列(归一化正交)的矩阵 Q ∈ M n , m Q\in M_{n,m} QMn,m 和上三角矩阵 R ∈ M m , m R\in M_{m,m} RMm,m,使得 A = Q R A=QR A=QR。如果 n = m n=m n=m,那么 Q Q Q 是酉矩阵(即 Q ∗ Q = Q Q ∗ = I Q^*Q=QQ^*=I QQ=QQ=I);此外,如果 A A A 是非奇异矩阵,则可以选取 R R R 为具有正对角元的上三角矩阵,并且在这种情况,因子 Q Q Q R R R 都是唯一的,如果 A ∈ M n , m ( R ) A\in M_{n,m}(\mathbb R) AMn,m(R),那么 Q Q Q R R R 都可以取实矩阵。
证明:
如果 A ∈ M n , m A\in M_{n,m} AMn,m ,且 r a n k ( A ) = m rank(A) = m rank(A)=m,则 A A A 的各列构成 C n \mathbb C^n Cn 的一个无关组,把 Gram-Schmidt 过程应用于 A A A 的各列,用矩阵记号描述所得的结果,就可以得到 A A A 的QR分解。Gram-Schmidt 算法的自然推广使同样的矩阵记号描述能够应用于任意矩阵 A A A 的各列,于是得到一般矩阵 A A A 的QR分解。以下简述之:
A = [ a 1 , a 2 , ⋯   , a m ] A=[\mathbf a_1,\mathbf a_2,\cdots,\mathbf a_m] A=[a1,a2,,am],其中 a i \mathbf a_i ai A A A 的列矢量(column vector),对 A A A 的各列矢量执行 Gram-Schmidt 过程,得到正交矢量 p 1 , p 2 , ⋯   , p m \mathbf p_1,\mathbf p_2,\cdots,\mathbf p_m p1,p2,,pm,归一化得到 q 1 , q 2 , ⋯   , q m \mathbf q_1,\mathbf q_2,\cdots,\mathbf q_m q1,q2,,qm,过程如下:

  • 正交化过程:

p 1 = a 1   p 2 = a 2 − a 2 T p 1 ∥ p 1 ∥ 2 p 1   p 3 = a 3 − a 3 T p 1 ∥ p 1 ∥ 2 p 1 − a 3 T p 2 ∥ p 2 ∥ 2 p 2 ⋯ ⋯ p m = a m − a m T p 1 ∥ p 1 ∥ 2 p 1 − ⋯ a m T p m − 1 ∥ p m − 1 ∥ 2 p m − 1 \mathbf p_1 = \mathbf a_1 \\ \ \\ \mathbf p_2 = \mathbf a_2 - \frac{\mathbf a_2^T\mathbf p_1}{\Vert\mathbf p_1\Vert^2}\mathbf p_1 \\ \ \\ \mathbf p_3 = \mathbf a_3 - \frac{\mathbf a_3^T\mathbf p_1}{\Vert\mathbf p_1\Vert^2}\mathbf p_1-\frac{\mathbf a_3^T\mathbf p_2}{\Vert\mathbf p_2\Vert^2}\mathbf p_2 \\ \cdots\cdots \\ \mathbf p_m = \mathbf a_m - \frac{\mathbf a_m^T\mathbf p_1}{\Vert\mathbf p_1\Vert^2}\mathbf p_1-\cdots\frac{\mathbf a_m^T\mathbf p_{m-1}}{\Vert\mathbf p_{m-1}\Vert^2}\mathbf p_{m-1} p1=a1 p2=a2p12a2Tp1p1 p3=a3p12a3Tp1p1p22a3Tp2p2pm=amp12amTp1p1pm12amTpm1pm1

  • 归一化过程:
    q i = p i ∥ p i ∥ \mathbf q_i = \frac {\mathbf p_i}{\Vert\mathbf p_i\Vert} qi=pipi
    由此
    a 1 = p 1 = ∥ p 1 ∥ q 1 = r 11 q 1   a 2 = a 2 T p 1 ∥ p 1 ∥ 2 p 1 + p 2 = r 21 q 1 + r 22 q 2 \mathbf a_1= \mathbf p_1 = \Vert \mathbf p_1\Vert \mathbf q_1=r_{11} \mathbf q_1 \\ \ \\ \mathbf a_2 = \frac{\mathbf a_2^T\mathbf p_1}{\Vert\mathbf p_1\Vert^2}\mathbf p_1 + \mathbf p_2 = r_{21} \mathbf q_1 + r_{22} \mathbf q_2 a1=p1=p1q1=r11q1 a2=p12a2Tp1p1+p2=r21q1+r22q2
    其中, r 21 = a 2 T p 1 ∥ p 1 ∥ 2 ⋅ r 11 r_{21} = \frac{\mathbf a_2^T\mathbf p_1}{\Vert\mathbf p_1\Vert^2}\cdot r_{11} r21=p12a2Tp1r11 r 22 = p 2 ∥ p 2 ∥ r_{22}=\frac {\mathbf p_2}{\Vert\mathbf p_2\Vert} r22=p2p2,如此类推,可得:
    a i = r i 1 q 1 + r i 2 q 2 + ⋯ + r i i q i , 1 ≤ i ≤ m \mathbf a_i=r_{i1}\mathbf q_1+r_{i2}\mathbf q_2 + \cdots+r_{ii}\mathbf q_i \qquad , 1\le i\le m ai=ri1q1+ri2q2++riiqi,1im
    于是,
    A = [ a 1 , a 2 , ⋯   , a m ] = [ r 11 q 1 ,   r 21 q 1 + r 22 q 2 , ⋯   ,   r m 1 q 1 + ⋯ + r m m q m ]   = [ q 1 , q 2 , ⋯   , q m ] ⋅ [ r 11 r 21 ⋯ r m 1 0 r 22 ⋯ r m 2 0 0 ⋯ r m 3 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ r m m ] A=[\mathbf a_1,\mathbf a_2,\cdots,\mathbf a_m]\\ =[r_{11}\mathbf q_1,\ r_{21}\mathbf q_1+r_{22}\mathbf q_2,\cdots,\ r_{m1}\mathbf q_1+\cdots + r_{mm}\mathbf q_m]\\ \ \\ =[\mathbf q_1,\mathbf q_2,\cdots,\mathbf q_m]\cdot\left[ \begin{array}{cccc} r_{11}& r_{21}&\cdots& r_{m1}\\ 0& r_{22}&\cdots& r_{m2}\\ 0&0&\cdots& r_{m3}\\ \vdots&\vdots&\ddots& \vdots\\ 0&0&\cdots& r_{mm} \end{array}\right] A=[a1,a2,,am]=[r11q1, r21q1+r22q2,, rm1q1++rmmqm] =[q1,q2,,qm]r11000r21r2200rm1rm2r
  • 6
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 《微分方程与线性代数PDF》是一本关于微分方程和线性代数的电子。微分方程和线性代数是数学中的重要分支,它们在各个学科和应用领域中都有广泛的应用。 微分方程是描述自然界和社会现象中变化规律的数学模型。它通过建立方程式来描述变量之间的关系,包括未知函数及其导数或微分。微分方程可以分为常微分方程和偏微分方程两类。常微分方程是只涉及一个未知函数的方程,而偏微分方程是涉及多个未知函数及其偏导数的方程。学习微分方程可以帮助我们理解和解决很多实际问题,如物理学中的运动学问题、化学反应的动力学过程以及经济学中的最优化问题等。 线性代数是研究向量空间及其线性变换的数学分支。向量空间是由一组向量组成的集合,线性变换则是将一个向量空间映射到另一个向量空间的变换。线性代数的基础概念包括向量、矩阵、线性方程组、特征值等。学习线性代数可以提供一种抽象和整体的思维方式,帮助我们理解和解决在各个领域中的实际问题,如计算机科学中的图像处理、金融学中的模型建立以及物理学中的量子力学等。 《微分方程与线性代数PDF》将微分方程和线性代数结合在一起,有助于我们深入理解它们之间的联系和应用。通过学习该电子,我们可以更全面地了解微分方程和线性代数的基本概念和方法,掌握它们的解法和求解技巧,从而在解决实际问题时能够更加灵活和准确地运用它们。 总之,微分方程和线性代数在数学和应用中都具有重要的地位,《微分方程与线性代数PDF》提供了一个系统和综合的学习资源,能够帮助我们深入学习和应用微分方程和线性代数的知识。 ### 回答2: 《微分方程和线性代数》是一本关于微分方程和线性代数的PDF电子。微分方程和线性代数是数学中的两个重要分支。微分方程研究描述变化率的方程,而线性代数则研究向量空间和线性映射。这两个领域在应用数学和科学领域中具有广泛的应用。 这本PDF电子提供了微分方程和线性代数的基本概念、原理和技巧的介绍。它可以作为大学数学学科的教材,也可以作为自学的参考。通过学习此,读者可以深入理解微分方程和线性代数之间的联系和应用。 这本电子的内容包括但不限于以下主题:常微分方程、偏微分方程、线性代数的基本概念、矩阵理论、线性方程组和特征值问题。每个主题都配有例题和习题,帮助读者巩固所学知识并提高解题能力。此外,中还介绍了一些实际应用和数值方法,如数值解微分方程和线性代数的计算方法。 总之,《微分方程和线性代数》这本PDF电子提供了一个系统而全面的学习微分方程和线性代数的资源。对于那些对这两个领域感兴趣的读者,它将是一个有益的学习工具。无论是学生还是专业人员,都可以从中获得知识和技能,以在数学和相关领域取得更好的成果。 ### 回答3: "微分方程和线性代数"是一个PDF文件。微分方程是数学中研究函数以及它们的导数之间关系的一个重要领域。它在描述自然界中的现象和工程学中的问题时起着关键作用。 线性代数是研究向量空间和线性变换的一门数学学科。它研究的对象包括向量、矩阵、线性方程组等。线性代数在计算机科学、物理学、经济学等领域有广泛应用。 "Differential Equations and Linear Algebra"这本PDF将这两个数学学科结合在一起,以解决更为复杂的问题。它讲述了如何使用线性代数的工具和方法来解决微分方程。这种结合使得我们可以更加全面地理解和分析各种现象和问题。 这本PDF可能会涵盖诸如常微分方程、偏微分方程、矩阵理论、特征值和特征向量等内容。通过学习这本PDF,读者将能够掌握建立微分方程和线性代数之间关系的基础知识和技能。 总之,这本"Differential Equations and Linear Algebra"的PDF文件是一个帮助我们理解和解决更为复杂问题的资源。它将微分方程和线性代数的概念和方法结合在一起,为我们提供了一种更全面且更深入的数学工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值