Applied Analysis Problem Sheet # 1 T5

大概是一点与数列相关的拓展内容+正解(顺带%一下朱神)

首先让我们来看一看斐波那契数列的公式:F_{n+2}=F_{n+1}+F_{n}

看起来是不是没什么求通项的思路?现在就是神秘嘉宾出场的时候了

常系数齐次线性递推数列

对于一个形如

a_{n+k}=c_{1}*a_{n+k-1}+c_{2}*a_{n+k-2}+\cdots +c_{k}*a_{n}

的递推式(c为常数)

例:F_{n+2}=2*F_{n+1}+3*F_{n}

我们可以列出方程:

x^{n+k}=c_1*x^{n+k-1}+c_2*x^{n+k-2}+\cdots +c_k*x^{n}

称之为该递推式的特征方程,该方程的解被称为特征根,记为x_1,x_2,\cdots x_k

当这些特征根中并不存在重根时,原式子的通项公式为

a_n=c_1*{x_{1}}^{n}+c_2*{x_{2}}^{n}+\cdots +c_k*{x_{k}}^{n}

而当存在重根时,其他部分处理不变,设存在p重根,分别为x_i,x_{i+1},x_{i+2}\cdots x_{i+p-1},将无重根通项公式中这些特征根相关项移除,加入

(c_{i}+n^1*c_{i+1}+n^2*c_{i+2}+ \cdots +n^{p-1}*c_{i+p-1})*{x_{i}}^{n}

即可

以上就是关于常系数齐次线性递推数列的一个比较简单的描述,详细讲解,深层内容,可行性证明请自行使用BFS(百度优先搜索)或GFS(谷歌优先搜索)查询

题目求解

非常水的正解

在前几问中,我们已经得到了x_{n+1}=1+\frac{1}{x_n},且知道了该数列是收敛的,则当该数列愈加趋近于极限,相邻两项间的差就越小,则当该函数位于不动点(即极限值位置)时,有式子

A=1+\frac{1}{A}

\frac{A}{1}=\frac{A+1}{A}

而黄金比例\phi的定义为:将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这个比值为黄金比例,即

\frac{\phi}{1-\phi}=\frac{1}{\phi}=\frac{\phi+1}{1}=\frac{\phi+2}{\phi+1}

有没有很像

没错,A=\phi+1=\frac{1+\sqrt{5}}{2},这就是答案了

大概比较难的暴力解

根据斐波那契数列列出其特征方程

x^2=x+1

解得x_1=\frac{1+\sqrt{5}}{2},x_2=\frac{1-\sqrt{5}}{2},又因为F_1=1,F_2=1,可列

\left\{\begin{matrix} c_1*x_1+c_2*x_2=1\\ c_1*x_1^2+c_2*x_2^2=1 \end{matrix}\right.

解得\left\{\begin{matrix} c_1=\frac{1}{\sqrt{5}}\\ c_2=-\frac{1}{\sqrt{5}} \end{matrix}\right.

F_n=\frac{1}{\sqrt5}[(\frac{1+\sqrt5}{2})^n-(\frac{1-\sqrt5}{2})^n]

再求得A=\frac{1+\sqrt5}{2}

现在想来用常系数齐次线性递推数列简直意义不明,不过写都写了,姑且还是发出来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值