【深度学习】CVPR2019-PAPER IDEAS

1. driving stereo: a large-scale dataset for stereo matching in autonomous driving scenarios 这位朋友的工作主要是在制作深度数据集,制作数据集的过程写了这篇paper。主要是深度标签不好获得,直接用雷达获...

2019-06-24 11:47:08

阅读数 53

评论数 0

CVPR 2019 新文阅读

1 learning a deep convnet for multi-label classification with partial labels 深度学习在单标签分类任务中表现很好,但是日常生活中的图像本质上是多标签的。多标签分类比单标签分类更困难,因为输入图像和输出标签空间都更复杂。与...

2019-06-13 23:11:13

阅读数 22

评论数 0

【深度学习】分类网络结构RESNET RESNEXT DENSENET DPN MOBILE NET SHUFFLE NET

RESNET 跳跃连接 RESNEXT 拆分-转换-合并 增加基数(独立路径的数量)来提高准确度比网络加深或扩大来提高准确度更有效。(为什么呢?) DENSENET 相加改为相并联 加强shortcut,将所有层直接连接在一起 DPN 将残差通道和densely co...

2019-05-24 09:21:23

阅读数 22

评论数 0

【深度学习】目标检测网络结构SSD RETINANET

one stage SSD: SSD是Faster-RCNN和YOLO中做了一次的分类和检测过程放在不同的图像大小上做了多次 RETINANET: RESNET+FPN+FOCAL LOSS

2019-05-21 16:37:01

阅读数 30

评论数 0

【深度学习】目标检测网络结构MASK RCNN FPN

其相对于FASTER RCNN改进如下: 1. 分割,检测,分类同时进行 2. 引入ROI ALIGN(对分类影响不大,对分割影响大,因为ROI POOLING对应回图像中的像素会有偏差,该方法会相对准确)代替faster rcnn中的ROI POOLING ROI ALIGN:https:...

2019-05-21 15:55:21

阅读数 16

评论数 0

【深度学习】目标检测网络结构SPP FAST-RCNN FASTER-RCNN

在讲fast-rcnn之前,我们先来看一下spp net吧?~ spp net对r-cnn的改进主要有两点: 1. 只对原图提取一次特征。输入是图片,在feature层对应位置找到候选框的位置。 2. 结合空间金字塔方法实现cnns的对不同尺度的输入。实现数据的多尺度输入。分...

2019-05-19 10:32:07

阅读数 27

评论数 0

【深度学习】目标检测网络结构RCNN

算法分为4个步骤: 1. 生成1k~2k个候选区域 使用selective search方法,从一张图像生成约2000~3000个候选区域: (1)使用一种过分割手段,将图像分割成小区域 (2)查看现有小区域,合并可能性最高的两个区域,重复直到整张图...

2019-05-17 16:06:34

阅读数 72

评论数 0

github 使用方法

1. 建仓库+key等 这个教程超级赞哦~ http://www.cnblogs.com/zuibunan/p/3843241.html 两个坑:1 创建key,如果有啥问题,就按默认的路径来;2 git init 可以不要here   2. 常见命令 (1) 如果网上和本地不同,先从...

2019-01-04 23:58:28

阅读数 97

评论数 8

Transfer Learning 文章解析

transfer learning: 包含所有的source  or target, labeled or unlabeled, finetune, multi-task learning的情况。总而言之一句话,训练的过程中用(单个数据集做supervised learning)之外的所有情况都算...

2018-11-29 10:04:33

阅读数 316

评论数 0

【深度学习】rnn and lstm

https://www.jianshu.com/p/9dc9f41f0b29一直好奇rnn一个一个生成句子里边那么多字是怎么更新weight的,尤其是前半段只管输入,后半段只管输出。其实是生成一句话之后统一计算每一个字的loss,然后一起更新的。lstm设计的巧妙之处在于解决了rnn短时记忆问题。...

2018-06-19 20:29:11

阅读数 164

评论数 0

【深度学习】增强学习

好久木有写博客了,生疏了不少,第一段删了改改了删,新更博文第一句只想说:hi,老朋友!好久不见~文中的图片来自莫烦python视频。视频内容真心很赞,一天就可以看完,有兴趣的朋友可以点击下边的链接哦https://space.bilibili.com/243821484/#/channel/det...

2018-06-19 19:51:10

阅读数 446

评论数 0

Mac安装网上的下载的程序出现文件损坏不让用的解决办法

sudo spctl --master-disable

2017-12-29 16:00:28

阅读数 1816

评论数 0

【深度学习】训练网络的方法总结

2017-09-26 17:42:51

阅读数 614

评论数 0

【深度学习】torch使用nngraph构建网络并训练

torch使用nngraph构建网络并训练 model = nn.Sequential() model:add(nn.Linear(3,5)) prl = nn.ConcatTable() prl:add(nn.Linear(5,1)) prl:add(nn.Linear(5,1))...

2017-09-19 10:25:54

阅读数 937

评论数 1

【小概念】格拉姆矩阵(gram matrix)

gram矩阵是计算每个通道I的feature map与每个通道j的feature map的内积。 gram matrix的每个值可以说是代表i通道的feature map与j通道的feature map的互相关程度。

2017-08-15 21:25:18

阅读数 3590

评论数 0

【小概念】最大均值差异(Maximum Mean Discrepancy)

将两个分布映射到另一个空间计算距离。 计算距离的方法是,计算分布上每一个点映射到另一空间的距离然后求和。 细节可参见: http://blog.csdn.net/he_min/article/details/69397975

2017-08-15 20:01:56

阅读数 4323

评论数 0

纳什均衡-深度学习-最优传输理论

队伍学习,生成对抗网络 — 纳什均衡 最优传输理论 - 威尔斯特拉距离 - 从一个空间转换到另一个空间 - 风格化

2017-07-30 19:16:13

阅读数 3304

评论数 0

torch中创建multitask网络结构

Torch7入门续集补充--- nngraph包的使用 http://blog.csdn.net/hungryof/article/details/72902169 faster-rcnn.torch https://github.com/andreaskoepf/faster-rcnn.tor...

2017-07-29 18:43:26

阅读数 1089

评论数 0

姿态估计论文思路整理 -- Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

文章: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ∗  paperuri:(ee7d699fb12eb95daec96f29da5452b9) 代码...

2017-07-28 19:04:18

阅读数 2812

评论数 0

【深度学习】图像标注评价标准

最近图像理解受到了广泛的关注,我们也来稍微了解一下神马是图像理解,图像标注的评价标准是神马,哇咔咔 图像理解就是理解图像的内容,通俗一些呢就是用一句话描述你所看到的图片中的内容。 深度学习这么火,我们一定尝试一下,看看它是否可以解决这个问题。噢,不!是一定可以解决,只是时间问题或者框架如何设计...

2017-07-28 14:59:22

阅读数 3058

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭