P1330 封锁阳光大学

题目描述

曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。

阳光大学的校园是一张由N个点构成的无向图,N个点之间由M条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在与这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。

询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。

输入输出格式

输入格式:

第一行:两个整数N,M

接下来M行:每行两个整数A,B,表示点A到点B之间有道路相连。

输出格式:

仅一行:如果河蟹无法封锁所有道路,则输出“Impossible”,否则输出一个整数,表示最少需要多少只河蟹。

输入输出样例

输入样例#1:复制
3 3
1 2
1 3
2 3
输出样例#1:复制
Impossible
输入样例#2:复制
3 2
1 2
2 3
输出样例#2:复制
1




说明

【数据规模】

1<=N<=10000,1<=M<=100000,任意两点之间最多有一条道路。
表示完全不会写,看的大佬的,很容易理解:大佬的题解。
#include<bits/stdc++.h>
using namespace std;
int nn,mm,x,y,n,m,ans;
int f[10002]={0},t[10002][300];
void dfs(int h)
{
    for(int j=1;j<=t[h][0];j++)
    {
        if(f[t[h][j]]==f[h])
        {
            cout<<"Impossible"<<endl;
            exit(0);
        }
        if(!f[t[h][j]])
        {
            f[t[h][j]]=3-f[h];
            if(f[t[h][j]]==1)
                nn++;
            else
                mm++;
            dfs(t[h][j]);
        }
    }
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        cin>>x>>y;
        t[x][++t[x][0]]=y;
        t[y][++t[y][0]]=x;
    }
    for(int i=1;i<=n;i++)
    if(!f[i])
    {
        f[i]=1;
        nn=1,mm=0;
        dfs(i);
        ans+=min(nn,mm);
    }
    cout<<ans<<endl;
    return 0;
}

阅读更多
个人分类: 图论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

P1330 封锁阳光大学

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭