[推荐系统]推荐系统实践Reference

 这只是一本197页的书 
   
  我想你未必过瘾 
   
  但作者附上了诸多好资料 
   
  无论是paper, blog文章,wikipedia词条,数据集还是开源项目等 
   
  你可以选择拥有 
   
  附上我收集的资料链接,格式基本按照‘URL+资料名称+出现在书中的页数’,某些链接可能需要你翻过一道‘墙’,某些重复引用的我就没重复贴上链接了 
   
   
  http://en.wikipedia. org/wiki/Information _overload 
   P1 
   
  http://www.readwrite web.com/archives/rec ommender_systems.php  
  (A Guide to Recommender System) P4 
   
  http://en.wikipedia. org/wiki/Cross-selli ng 
   (Cross Selling) P6 
   
  http://blog.kiwitobe s.com/?p=58 , http://stanford2009. wikispaces.com/ 
  (课程:Data Mining and E-Business: The Social Data Revolution) P7 
   
   http://thesearchstra tegy.com/ebooks/an%2 0introduction%20to%2 0search%20engines%20 and%20web%20navigati on.pdf 
  (An Introduction to Search Engines and Web Navigation) p7 
   
  http://www.netflixpr ize.com/ 
  p8 
   
  http://cdn-0.nflximg .com/us/pdf/Consumer _Press_Kit.pdf 
   p9 
   
   http://stuyresearch. googlecode.com/hg-hi story/c5aa9d65d48c78 7fd72dcd0ba301693831 2102bd/blake/resourc es/p293-davidson.pdf  
  (The Youtube video recommendation system) p9 
   
   http://www.slideshar e.net/plamere/music- recommendation-and-d iscovery 
  ( PPT: Music Recommendation and Discovery) p12 
   
  http://www.facebook. com/instantpersonali zation/ 
  P13 
   
   http://about.digg.co m/blog/digg-recommen dation-engine-update
   (Digg Recommendation Engine Updates) P16 
   
   http://static.google usercontent.com/exte rnal_content/untrust ed_dlcp/research.goo gle.com/en//pubs/arc hive/36955.pdf 
   (The Learning Behind Gmail Priority Inbox)p17 
   
  http://www.grouplens .org/papers/pdf/mcne e-chi06-acc.pdf 
  (Accurate is not always good: How Accuracy Metrics have hurt Recommender Systems) P20 
   
  http://www-users.cs. umn.edu/~mcnee/mcnee -cscw2006.pdf 
   (Don’t Look Stupid: Avoiding Pitfalls when Recommending Research Papers)P23 
   
  http://www.sigkdd.or g/explorations/issue s/9-2-2007-12/7-Netf lix-2.pdf 
   (Major componets of the gravity recommender system) P25 
   
  http://cacm.acm.org/ blogs/blog-cacm/2292 5-what-is-a-good-rec ommendation-algorith m/fulltext 
  (What is a Good Recomendation Algorithm?) P26 
   
  http://research.micr osoft.com/pubs/11539 6/evaluationmetrics. tr.pdf 
   (Evaluation Recommendation Systems) P27 
   
  http://mtg.upf.edu/s tatic/media/PhD_ocel ma.pdf 
  (Music Recommendation and Discovery in the Long Tail) P29 
   
  http://ir.ii.uam.es/ divers2011/ 
  (Internation Workshop on Novelty and Diversity in Recommender Systems) p29 
   
  http://www.cs.ucl.ac .uk/fileadmin/UCL-CS /research/Research_N otes/RN_11_21.pdf 
  (Auralist: Introducing Serendipity into Music Recommendation ) P30 
   
  http://www.springerl ink.com/content/978- 3-540-78196-7/#secti on=239197&page=1 &locus=21 
  (Metrics for evaluating the serendipity of recommendation lists) P30 
   
  http://dare.uva.nl/d ocument/131544 
  (The effects of transparency on trust in and acceptance of a content-based art recommender) P31 
   
  http://brettb.net/pr oject/papers/2007%20 Trust-aware%20recomm ender%20systems.pdf 
   (Trust-aware recommender systems) P31 
   
  http://recsys.acm.or g/2011/pdfs/RobustTu torial.pdf 
  (Tutorial on robutness of recommender system) P32 
   
  http://youtube-globa l.blogspot.com/2009/ 09/five-stars-domina te-ratings.html 
   (Five Stars Dominate Ratings) P37 
   
  http://www.informati k.uni-freiburg.de/~c ziegler/BX/ 
  (Book-Crossing Dataset) P38 
   
  http://www.dtic.upf. edu/~ocelma/MusicRec ommendationDataset/l astfm-1K.html 
  (Lastfm Dataset) P39 
   
  http://mmdays.com/20 08/11/22/power_law_1
  (浅谈网络世界的Power Law现象) P39 
   
  http://www.grouplens .org/node/73/ 
  (MovieLens Dataset) P42 
   
  http://research.micr osoft.com/pubs/69656 /tr-98-12.pdf 
  (Empirical Analysis of Predictive Algorithms for Collaborative Filtering) P49 
   
  http://vimeo.com/124 2909 
  (Digg Vedio) P50 
   
  http://glaros.dtc.um n.edu/gkhome/fetch/p apers/itemrsCIKM01.p df 
   (Evaluation of Item-Based Top-N Recommendation Algorithms) P58 
   
  http://www.cs.umd.ed u/~samir/498/Amazon- Recommendations.pdf 
  (Amazon.com Recommendations Item-to-Item Collaborative Filtering) P59 
   
  http://glinden.blogs pot.com/2006/03/earl y-amazon-similaritie s.html 
   (Greg Linden Blog) P63 
   
  http://www.hpl.hp.co m/techreports/2008/H PL-2008-48R1.pdf 
  (One-Class Collaborative Filtering) P67 
   
  http://en.wikipedia. org/wiki/Stochastic_ gradient_descent 
  (Stochastic Gradient Descent) P68 
   
  http://www.ideal.ece .utexas.edu/seminar/ LatentFactorModels.p df 
   (Latent Factor Models for Web Recommender Systems) P70 
   
  http://en.wikipedia. org/wiki/Bipartite_g raph 
  (Bipatite Graph) P73 
   
  http://ieeexplore.ie ee.org/xpl/login.jsp ?tp=&arnumber=40 72747&url=http%3 A%2F%2Fieeexplore.ie ee.org%2Fxpls%2Fabs_ all.jsp%3Farnumber%3 D4072747 
  (Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation) P74 
   
  http://www-cs-studen ts.stanford.edu/~tah erh/papers/topic-sen sitive-pagerank.pdf 
  (Topic Sensitive Pagerank) P74 
   
  http://www.stanford. edu/dept/ICME/docs/t hesis/Li-2009.pdf 
  (FAST ALGORITHMS FOR SPARSE MATRIX INVERSE COMPUTATIONS) P77 
   
  https://www.aaai.org /ojs/index.php/aimag azine/article/view/1 292 
   (LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data) P80
   
  http://research.yaho o.com/files/wsdm266m -golbandi.pdf 
  ( adaptive bootstrapping of recommender systems using decision trees) P87 
   
  http://en.wikipedia. org/wiki/Vector_spac e_model 
  (Vector Space Model) P90 
   
  http://tunedit.org/c hallenge/VLNetChalle nge 
  (冷启动问题的比赛) P92 
   
  http://www.cs.prince ton.edu/~blei/papers /BleiNgJordan2003.pd
   (Latent Dirichlet Allocation) P92 
   
  http://en.wikipedia. org/wiki/Kullback%E2 %80%93Leibler_diverg ence 
   (Kullback–Leibler divergence) P93 
   
  http://www.pandora.c om/about/mgp 
  (About The Music Genome Project) P94 
   
  http://en.wikipedia. org/wiki/List_of_Mus ic_Genome_Project_at tributes 
  (Pandora Music Genome Project Attributes) P94 
   
  http://www.jinni.com /movie-genome.html 
  (Jinni Movie Genome) P94 
   
  http://www.shilad.co m/papers/tagsplanati ons_iui2009.pdf 
   (Tagsplanations: Explaining Recommendations Using Tags) P96 
   
  http://en.wikipedia. org/wiki/Tag_(metada ta) 
  (Tag Wikipedia) P96 
   
  http://www.shilad.co m/shilads_thesis.pdf  
  (Nurturing Tagging Communities) P100 
   
  http://www.stanford. edu/~morganya/resear ch/chi2007-tagging.p df 
   (Why We Tag: Motivations for Annotation in Mobile and Online Media ) P100 
   
  http://www.google.co m/url?sa=t&rct=j &q=delicious%20d ataset%20dai-larbor& amp;source=web&c d=1&ved=0CFIQFjA A&url=http%3A%2F %2Fwww.dai-labor.de% 2Fen%2Fcompetence_ce nters%2Firml%2Fdatas ets%2F&ei=1R4JUK yFOKu0iQfKvazzCQ& ;usg=AFQjCNGuVzzKIKi 3K2YFybxrCNxbtKqS4A& amp;cad=rjt 
  (Delicious Dataset) P101 
   
  http://research.micr osoft.com/pubs/73692 /yihgoca-www06.pdf 
   (Finding Advertising Keywords on Web Pages) P118 
   
  http://www.kde.cs.un i-kassel.de/ws/rsdc0 8/ 
  (基于标签的推荐系统比赛) P119 
   
  http://delab.csd.aut h.gr/papers/recsys.p df 
  (Tag recommendations based on tensor dimensionality reduction)P119 
   
  http://www.l3s.de/we b/upload/documents/1 /recSys09.pdf 
  (latent dirichlet allocation for tag recommendation) P119 
   
  http://citeseerx.ist .psu.edu/viewdoc/dow nload?doi=10.1.1.94. 5271&rep=rep1&am p;type=pdf 
  (Folkrank: A ranking algorithm for folksonomies) P119 
   
  http://www.grouplens .org/system/files/ta gommenders_numbered. pdf 
   (Tagommenders: Connecting Users to Items through Tags) P119 
   
  http://www.grouplens .org/system/files/gr oup07-sen.pdf 
  (The Quest for Quality Tags) P120 
   
  http://2011.camracha llenge.com/ 
  (Challenge on Context-aware Movie Recommendation) P123 
   
  http://bits.blogs.ny times.com/2011/09/07 /the-lifespan-of-a-l ink/ 
  (The Lifespan of a link) P125 
   
  http://www0.cs.ucl.a c.uk/staff/l.capra/p ublications/lathia_s igir10.pdf 
   (Temporal Diversity in Recommender Systems) P129 
   
  http://staff.science .uva.nl/~kamps/ireva l/papers/paper_14.pd
   (Evaluating Collaborative Filtering Over Time) P129 
   
  http://www.google.co m/places/ 
  (Hotpot) P139 
   
  http://www.readwrite web.com/archives/goo gle_launches_recomme ndation_engine_for_p laces.php 
  (Google Launches Hotpot, A Recommendation Engine for Places) P139 
   
  http://xavier.amatri ain.net/pubs/Geoloca tedRecommendations.p df 
   (geolocated recommendations) P140 
   
  http://www.nytimes.c om/interactive/2010/ 01/10/nyregion/20100 110-netflix-map.html  
  (A Peek Into Netflix Queues) P141 
   
  http://www.cs.umd.ed u/users/meesh/420/ne ighbor.pdf 
  (Distance Browsing in Spatial Databases1) P142 
   
  http://www.eng.aubur n.edu/~weishinn/pape rs/MDM2010.pdf 
   (Efficient Evaluation of k-Range Nearest Neighbor Queries in Road Networks) P143 
   
   
  http://blog.nielsen. com/nielsenwire/cons umer/global-advertis ing-consumers-trust- real-friends-and-vir tual-strangers-the-m ost/ 
  (Global Advertising: Consumers Trust Real Friends and Virtual Strangers the Most) P144 
   
  http://static.google usercontent.com/exte rnal_content/untrust ed_dlcp/research.goo gle.com/en//pubs/arc hive/36371.pdf 
  (Suggesting Friends Using the Implicit Social Graph) P145 
   
  http://blog.nielsen. com/nielsenwire/onli ne_mobile/friends-fr enemies-why-we-add-a nd-remove-facebook-f riends/ 
  (Friends & Frenemies: Why We Add and Remove Facebook Friends) P147 
   
  http://snap.stanford .edu/data/ 
  (Stanford Large Network Dataset Collection) P149 
   
  http://www.dai-labor .de/camra2010/ 
  (Workshop on Context-awareness in Retrieval and Recommendation) P151 
   
  http://www.comp.hkbu .edu.hk/~lichen/down load/p245-yuan.pdf 
   (Factorization vs. Regularization: Fusing Heterogeneous 
  Social Relationships in Top-N Recommendation) P153 
   
  http://www.infoq.com /news/2009/06/Twitte r-Architecture/ 
  (Twitter, an Evolving Architecture) P154 
   
  http://www.google.co m/url?sa=t&rct=j &q=&esrc=s&a mp;source=web&cd =2&ved=0CGQQFjAB &url=http%3A%2F% 2Fciteseerx.ist.psu. edu%2Fviewdoc%2Fdown load%3Fdoi%3D10.1.1. 165.3679%26rep%3Drep 1%26type%3Dpdf&e i=dIIJUMzEE8WviQf5tN jcCQ&usg=AFQjCNG w2bHXJ6MdYpksL66bhUE 8krS41w&sig2=5Ec EDhRe9S5SQNNojWk7_Q 
  (Recommendations in taste related domains) P155 
   
  http://www.ercim.eu/ publication/ws-proce edings/DelNoe02/Rash miSinha.pdf 
  (Comparing Recommendations Made by Online Systems and Friends) P155 
   
  http://techcrunch.co m/2010/04/22/faceboo k-edgerank/ 
  (EdgeRank: The Secret Sauce That Makes Facebook's News Feed Tick) P157 
   
  http://www.grouplens .org/system/files/p2 17-chen.pdf 
  (Speak Little and Well: Recommending Conversations in Online Social Streams) P158 
   
  http://blog.linkedin .com/2008/04/11/lear n-more-abou-2/ 
  (Learn more about “People You May Know”) P160 
   
  http://domino.watson .ibm.com/cambridge/r esearch.nsf/58bac2a2 a6b05a1285256b30005b 3953/8186a4852682192 4852576b300537839/$FILE/TR%202009.09%20Make%20New%20Frends.pdf 
  (“Make New Friends, but Keep the Old” – Recommending People on Social Networking Sites) P164 
   
  http://www.google.co m.hk/url?sa=t&rc t=j&q=social+rec ommendation+using+pr ob&source=web&am p;cd=2&ved=0CFcQ FjAB&url=http%3A %2F%2Fciteseerx.ist. psu.edu%2Fviewdoc%2F download%3Fdoi%3D10. 1.1.141.465%26rep%3D rep1%26type%3Dpdf&am p;ei=LY0JUJ7OL9GPiAf e8ZzyCQ&usg=AFQj CNH-xTUWrs9hkxTA8si5 fztAdDAEng 
  (SoRec: Social Recommendation Using Probabilistic Matrix) P165 
   
  http://olivier.chape lle.cc/pub/DBN_www20 09.pdf 
  (A Dynamic Bayesian Network Click Model for Web Search Ranking) P177 
   
  http://www.google.co m.hk/url?sa=t&rc t=j&q=online+lea rning+from+click+dat a+spnsored+search&am p;source=web&cd= 1&ved=0CFkQFjAA& amp;url=http%3A%2F%2 Fwww.research.yahoo. net%2Ffiles%2Fp227-c iaramita.pdf&ei= HY8JUJW8CrGuiQfpx-Xy CQ&usg=AFQjCNE_C YbEs8DVo84V-0VXs5Feq aJ5GQ&cad=rjt 
  (Online Learning from Click Data for Sponsored Search) P177 
   
  http://www.cs.cmu.ed u/~deepay/mywww/pape rs/www08-interaction .pdf 
  (Contextual Advertising by Combining Relevance with Click Feedback) P177 
  http://tech.hulu.com /blog/2011/09/19/rec ommendation-system/ 
  (Hulu 推荐系统架构) P178 
   
  http://mymediaprojec t.codeplex.com/ 
  (MyMedia Project) P178 
   
  http://www.grouplens .org/papers/pdf/www1 0_sarwar.pdf 
  (item-based collaborative filtering recommendation algorithms) P185 
   
  http://www.stanford. edu/~koutrika/Readin gs/res/Default/bills us98learning.pdf 
  (Learning Collaborative Information Filters) P186 
   
  http://sifter.org/~s imon/journal/2006121 1.html 
  (Simon Funk Blog:Funk SVD) P187 
   
  http://courses.ischo ol.berkeley.edu/i290 -dm/s11/SECURE/a1-ko ren.pdf 
  (Factor in the Neighbors: Scalable and Accurate Collaborative Filtering) P190 
   
  http://nlpr-web.ia.a c.cn/2009papers/gjhy /gh26.pdf 
  (Time-dependent Models in Collaborative Filtering based Recommender System) P193 
   
  http://sydney.edu.au /engineering/it/~jos iah/lemma/kdd-fp074- koren.pdf 
  (Collaborative filtering with temporal dynamics) P193 
   
  http://en.wikipedia. org/wiki/Least_squar es 
  (Least Squares Wikipedia) P195 
   
  http://www.mimuw.edu .pl/~paterek/ap_kdd. pdf 
  (Improving regularized singular value decomposition for collaborative filtering) P195 
   
  http://public.resear ch.att.com/~volinsky /netflix/kdd08koren. pdf 
   (Factorization Meets the Neighborhood: a Multifaceted 
  Collaborative Filtering Model) P195 
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
用户画像,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。用户画像最初是在电商领域得到应用的,在大数据时代背景下,用户信息充斥在网络中,将用户的每个具体信息抽象成标签,利用这些标签将用户形象具体化,从而为用户提供有针对性的服务。还记得年底收到的支付宝年度消费账单吗?帮助客户回顾一年的消费细节,包括消费能力、消费去向、信用额度等等,再根据每位客户的消费习惯,量身定制商品推荐列表……这一活动,将数据这个量化的词以形象生动的表现手法推到了大众面前。这就是用户画像在电商领域的一个应用,随着我国电子商务的高速发展,越来越多的人注意到数据信息对于电商市场的推动作用。基于数据分析的精准营销方式,可以最大限度的挖掘并留住潜在客户,数据统计与分析为电商市场带来的突破不可估量。在大数据时代,一切皆可“量化”,看似普通的小小数字背后,蕴藏着无限商机,也正在被越来越多的企业所洞悉。如何从大数据中挖掘商机?建立用户画像和精准化分析是关键。什么是用户画像呢?用户画像是根据市场研究和数据,创建的理想中客户虚构的表示。创建用户画像,这将有助于理解现实生活中的目标受众。企业创建的人物角色画像,具体到针对他们的目标和需求,并解决他们的问题,同时,这将帮助企业更加直观的转化客户。用户画像最重要的一个步骤就是对用户标签化,我们要明确要分析用户的各种维度,才能确定如何对用户进行画像。用户画像建立步骤首先,基础数据收集,电商领域大致分为行为数据、内容偏好数据、交易数据,如浏览量、访问时长、家具偏好、回头率等等。而金融领域又有贷款信息,信用卡,各种征信信息等等。然后,当我们对用户画像所需要的基础数据收集完毕后,需要对这些资料进行分析和加工,提炼关键要素,构建可视化模型。对收集到的数据进行行为建模,抽象出用户的标签。电商领域可能是把用户的基本属性、购买能力、行为特征、兴趣爱好、心理特征、社交网络大致的标签化,而金融风控领域则是更关注用户的基本信息,风险信息,财务信息等等。随后,要利用大数据的整体架构对标签化的过程进行开发实现,对数据进行加工,将标签管理化。同时将标签计算的结果进行计算。这个过程中需要依靠Hive,Hbase等大数据技术,为了提高数据的实时性,还要用到Flink,Kafka等实时计算技术。最后,也是最关键的一步,要将我们的计算结果,数据,接口等等,形成服务。比如,图表展示,可视化展示。基于Flink+Alink构建全端亿级实时用户画像系统课程,将带领大家一步一步实现一个强大的实时用户画像系统,该系统以热门的互联网电商实际业务应用场景为案例讲解,具体包含:标签管理(支持动态标签扩展,动态标签指标)、用户预测、用户群体画像、用户行为画像、用户中心、几大内容。本课程采用全新的大数据技术栈:Flink+Alink,让你体验到全新技术栈的强大,感受时代变化的气息,通过学习完本课程可以节省你摸索的时间,节省企业成本,提高企业开发效率。本课程包含的技术: 开发工具为:IDEA、WebStorm Flink1.13.0Alink1.5.0 ClickHouseDolphinSchedulerHadoopHbaseKafkaZookeeper SpringBoot2.0.8.RELEASE SpringCloud Finchley.SR2BinlogCanal MySQL MybatisVue.js、Nodejs、ElementUI 课程亮点: 1.与企业接轨、真实工业界产品2.标签化管理模块功能,支持动态标签扩展3.动态标签指标分析和维护4.Alink算法技术框架 5.大数据热门技术Flink新版本 6.主流微服务后端系统 7.数据库实时同步解决方案 8.涵盖主流前端技术VUE+NodeJS+ElementUI 9.集成SpringCloud实现统一整合方案 10.互联网大数据企业热门技术栈 11.支持海量数据的实时画像 12.支持全端实时画像 13.全程代码实操,提供全部代码和资料 14.提供答疑和提供企业技术方案咨询 

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值