[LeetCode]238.Product of Array Except Self

160 篇文章 28 订阅

题目

Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].

Solve it without division and in O(n).

For example, given [1,2,3,4], return [24,12,8,6].

Follow up:

Could you solve it with constant space complexity? 
(Note: The output array does not count as extra space 
for the purpose of space complexity analysis.)

思路

这里写图片描述

对于i = 5 时 result[5] = (nums[0] * nums[1] * nums[2] * nums[3] * nums[4] ) * (nums[6] nums[7] * nums[8] * nums[9] * nums[10])

从上面开始看出对于第i个,我们只要知道它左边的连续乘积它右边的连续乘积 就OK了。

代码

/*---------------------------------------
*   日期:2015-07-31
*   作者:SJF0115
*   题目: 238.Product of Array Except Self
*   网址:https://leetcode.com/problems/product-of-array-except-self/
*   结果:AC
*   来源:LeetCode
*   博客:
-----------------------------------------*/
#include <iostream>
#include <vector>
using namespace std;

class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) {
        int size = nums.size();
        vector<int> result(size,0);
        vector<int> left(size,0);
        vector<int> right(size,0);
        int leftNum = 1,rightNum = 1;
        // left[i] 为 nums[0]...nums[i-1]的连续乘积
        // right[i] 为 nums[i+1]...nums[size-1]的连续乘积
        for(int i = 0;i < size;++i){
            left[i] = leftNum;
            right[size-i-1] = rightNum;
            leftNum *= nums[i];
            rightNum *= nums[size-i-1];
        }//for
        // 计算不包括自己的所有乘积
        for(int i = 0;i < size;++i){
            result[i] = left[i] * right[i];
        }//for
        return result;
    }
};

int main(){
    Solution s;
    vector<int> vec = {1,2};
    vector<int> result = s.productExceptSelf(vec);
    int size = result.size();
    for(int i = 0;i < size;++i){
        cout<<result[i]<<" ";
    }//for
    return 0;
}

运行时间

这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@SmartSi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值