给定一个单链表,只给出头指针h:
1、如何判断是否存在环?
2、如何知道环的长度?
3、如何找出环的连接点在哪里?
4、带环链表的长度是多少?
解法:
1、对于问题1,使用追赶的方法,设定两个指针slow、fast,从头指针开始,每次分别前进1步、2步。如存在环,则两者相遇;如不存在环,fast遇到NULL退出。
2、对于问题2,记录下问题1的碰撞点p,slow、fast从该点开始,再次碰撞所走过的操作数就是环的长度s,当然也可以利用slow再次走到p。
3、问题3:有定理:碰撞点p到连接点的距离=头指针到连接点的距离,因此,分别从碰撞点、头指针开始走,相遇的那个点就是连接点。(证明在后面附注)。
4、问题3中已经求出连接点距离头指针的长度,加上问题2中求出的环的长度,二者之和就是带环单链表的长度。
代码如下
void Isloop(Node* head){
if(!head||!head->next)
return;
Node* p,q;
bool loop=false;
p=q=head->next;
while(q&&q->next){//判断是否有环
p=p->next;
q=q->next->next;
if(p==q){
loop=true;
break;
}
}
if(!loop)
cout<<"This link has not loop\n";
else{
cout<<"This link has a loop\n";
Node* r=p;
q=head->next;
int nonloop=1,loopcount=1;
//nonloop计算非环结点数,loopcount计算环上结点数
do{//计算环上的结点数
p=p->next;
++loopcount;
}while(p!=r);
while(p!=q){//得到环的入口结点,同时计算得到非环的结点数
p=p->next;
q=q->next;
++nonloop;
}
cout<<"\nStart of loop: "<<p->data<<endl;
cout<<"\nCount of nonloop: "<<nonloop
<<"\nCount of loop: "<<loopcount
<<"\nCount of Linknode: "<<nonloop+loopcount<<endl;
}
}
链表形状类似数字 6 。
假设甩尾(在环外)长度为 a(结点个数),环内长度为 b 。
则总长度(也是总结点数)为 a+b 。
从头开始,0 base 编号。
将第 i 步访问的结点用 S(i) 表示。i = 0, 1 ...
当 i<a 时,S(i)=i ;
当 i≥a 时,S(i)=a+(i-a)%b 。
分析追赶过程:
两个指针分别前进,假定经过 x 步后,碰撞。则有:S(x)=S(2x)
由环的周期性有:2x=tb+x 。得到 x=tb 。(x,t不是可以随便变的变量,而是记号,分别记录了slow走了多少步和fast比slow多走了几圈)
另,碰撞时,必须在环内,不可能在甩尾段,有 x>=a 。
连接点为从起点走 a 步,即 S(a)。
S(a) = S(tb+a) = S(x+a)。(S(a) = S(tb+a) 和前面分析的S(x)=S(2x)无关,而是S(a) = S(nb+a),当n为任何数的时候逗成立,当然为特定的t也是成立的)
得到结论:从碰撞点 x 前进 a 步即为连接点。
根据假设易知 S(a-1) 在甩尾段,S(a) 在环上,而 S(x+a) 必然在环上。所以可以发生碰撞。
综上,从 x 点和从起点同步前进,第一个碰撞点就是连接点。