如何训练神经网络--1


前言

学海无涯,笔勤不辍…暑假过的也太懒惰了…没想到已经断更了一个多月了…笔者要好好反省自己,下次还敢 hhh
本阶段,笔者将更新一些ML/DL的相关知识,满满干货,快点赞收藏吧…(本文基于读者,对机器学习/神经网络/深度学习 有一定的基础了解,直接上实操相关的知识…)


训练一个神经网络,最基本的要了解激活函数,预处理、权重设置、Btach normalization、评价模型、超参数优化
今天就浅浅谈一下激活函数(常见)的问题,以及在实践中用哪个激活函数比较好…

一、浅谈激活函数

1.sigmoid 函数

在这里插入图片描述
其公式为:f(x)= 1/(1+e-x)
sigmoid函数存在的问题:

1.可以发现,当input(x)是正数且特别大或者是负数且特别小,函数趋于平坦,梯度变得很小,即神经元趋于饱和,使得反向传播时,根据梯度对各超参数调整的幅度很小,很可能会发生“梯度消失”的问题
2.同时,经由sigmoid函数后,input(x)会被投影到(0,1)之间,这不是0对称的,也就是说,下一层的神经元的输入都是正的,这也使得超参数的梯度优化方向不是一直为正就是一直为负,这使得梯度下降/超参数优化变得困难..
3.因为要计算e/exp() 会消耗大量的计算资源...
​```

2.tanh函数

在这里插入图片描述
其公式为:在这里插入图片描述
可以看出,它在sigmoid函数基础上进行了改进,解决了非0中心的问题,能让输入的input(x)不全为正数,这比sigmoid是一个进步…
它的问题:

1.与sigmoid函数相同,当输入的值为大的正数或小的负数,它在后向传播中可能会导致“梯度消失”问题
2.要计算e/exp() 消耗了计算机的算力资源

3.RELU函数:

在这里插入图片描述
其公式为:
在这里插入图片描述
可以很清楚的看见,当input(x)是正数时,它的梯度不会消失,一定程度上解决了梯度消失的问题
同时,它的运算是线性的,速度更快,在实际操作中,一般是sigmod/tanh 的六倍
但它同样存在问题,就是它没有0中心化…

RELU系列的激活函数是很多的…之后的就之后来更新吧…
实践中多使用RELU函数作为激活函数,可以尝试使用tanh或者其他RELU系列函数,不要用sigmoid函数!!!


总结

在训练神经网络时,激活函数最好使用RELU系列,一般是RELU函数…RELU函数能很好增加非线性,它在正数范围很好的克服了神经元的饱和问题,输入有不同能很直观的表现出来,能让更多信息进入下一层,使得神经网络更好地学习到现实世界的信息,更加贴合现实世界…但是RELU函数,可能会死亡,由于负输入会使得输出是0,影响参数的更新,导致神经元的失效…

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值