algorithm 1.4.18

题目:

Local minimum of an array.Write a program that, given an arraya[] of N distinct integers, finds alocal minimum: an indexi such that a[i-1] < a[i] < a[i+1].Your program should use ~2lgN compares in the worst case

书中给出的解决思路是:

Answer: Examine the middle valuea[N/2] and its two neighbors a[N/2 - 1] and a[N/2 + 1]. Ifa[N/2] is a local minimum, stop; otherwise search in the half with the smaller neighbor

这个题目考虑了很久,也没有想明白,在stackoverflow里面看了一些回答之后,觉得这个题目给的条件是有问题的,或者说不充分的;

有几个点需要限制:

1.所有的元素不能有相同的,如果有相同的话,那么递归条件就需要进行重新处理;


思路:

array[from-to],

1、两个端点array[from] < array[from+1] ,或者aray[to] < array[to-1],是极小值;

2、如果array只有一个值,这种情况可以认为有极小值,也可以认为没有;

3、进入递归条件时,array满足下面的条件 array[from] > array[from+1],array[to] > array[to-1];

mid = (from+to)/2;

IF array[mid]  > array[mid+1]  THEN find in [mid, to]; 

IF array[mid] > array[mid-1] THEN find in [from ,mid];

IF array[mid] < array[mid+1] && array[mid-1] > array[mid] RETURN  mid;

ELSE break;


根据上面的算法,java实现如下:


package com.frozenxia.algorithm.basic.exercises;

public class LocalMinimun1418 {
	public static void main(String[] args) {
		int arry[] = { 9, 8, 7, 3, 10 };
		System.out.println(new LocalMinimun1418().findLocaMinimal(arry));
	}

	int findLocaMinimal(int arry[]) {
		if (arry == null)
			return -1;
		int lenth = arry.length;
		if (lenth == 0)
			return -1;
		if (lenth == 1)
			return 0;
		if (lenth == 2)
			return arry[0] < arry[1] ? 0 : -1;
		if (arry[0] < arry[1])
			return 0;
		if (arry[lenth - 1] < arry[lenth - 2])
			return lenth - 1;

		int left = 0;
		int right = lenth - 1;
		while (left < right) {
			if (right - left < 2)
				break;
			int mid = (left + right) / 2;
			System.out.println(mid);
			if (arry[mid] > arry[mid - 1]) {
				right = mid;
			} else if (arry[mid] > arry[mid + 1]) {
				left = mid;
			} else if (arry[mid] < arry[mid - 1] && arry[mid] < arry[mid + 1]) {
				return mid;
			} else {
				break;
			}
		}
		return -1;
	}
}




 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值