
卷积神经网络通俗理解
。
卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。
卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络。
谷歌人工智能写作项目:小发猫

卷积神经网络工作原理直观的解释?
其实道理很简单,因为卷积运算,从频域角度看,是频谱相乘所以图像跟卷积核做卷积时,两者频谱不重叠的部分相乘,自然是0,那图像这部分频率的信息就被卷积核过滤了常见的神经网络结构。
而图像,本质上就是二维离散的信号,像素点值的大小代表该位置的振幅,所以图像包含了一系列频率的特征。比如图像边缘部分,像素值差
卷积神经网络(CNN)是深度学习的重要组成部分,通过卷积运算提取图像特征,实现对输入信息的平移不变分类。CNN工作原理包括局部感受野和权值共享,减少参数数量并提升训练性能。深度学习中,CNN与其他结构如LSTM、ResNet结合,采用ReLU等激活函数,克服传统多层网络的梯度消失等问题,实现信号到特征再到值的转换。近年来,CNN在立体匹配和多视图立体重建等领域取得显著进步,但仍然面临大规模场景重建的挑战。
最低0.47元/天 解锁文章
426

被折叠的 条评论
为什么被折叠?



