如何简单形象又有趣地讲解神经网络是什么?
神经网络最重要的用途是分类,为了让大家对分类有个直观的认识,咱们先看几个例子:垃圾邮件识别:现在有一封电子邮件,把出现在里面的所有词汇提取出来,送进一个机器里,机器需要判断这封邮件是否是垃圾邮件。
疾病判断:病人到医院去做了一大堆肝功、尿检测验,把测验结果送进一个机器里,机器需要判断这个病人是否得病,得的什么病。
猫狗分类:有一大堆猫、狗照片,把每一张照片送进一个机器里,机器需要判断这幅照片里的东西是猫还是狗。这种能自动对输入的东西进行分类的机器,就叫做分类器。分类器的输入是一个数值向量,叫做特征(向量)。
在第一个例子里,分类器的输入是一堆 0、1 值,表示字典里的每一个词是否在邮件中出现,比如向量 (1,1,0,0,0……) 就表示这封邮件里只出现了两个词 abandon 和 abnormal;第二个例子里,分类器的输入是一堆化验指标;第三个例子里,分类器的输入是照片,假如每一张照片都是 320*240 像素的红绿蓝三通道彩色照片,那么分类器的输入就是一个长度为 320*240*3=230400 的向量。
分类器的输出也是数值。
第一个例子中,输出 1 表示邮件是垃圾邮件,输出 0 则说明邮件是正常邮件;第二个例子中,输出 0 表示健康,输出 1 表示有甲肝,输出 2 表示有乙肝,输出 3 表示有饼干等等;第三个例子中,输出 0 表示图片中是狗,输出 1 表示是猫。
分类器的目标就是让正确分类的比例尽可能高。一般我们需要首先收集一些样本,人为标记上正确分类结果,然后用这些标记好的数据训练分类器,训练好的分类器就可以在新来的特征向量上工作了。
谷歌人工智能写作项目:神经网络伪原创

如何简单形象又有趣地讲解神经网络是什么?
神经网络神奇的地方在于它的每一个组件非常简单——把空间切一刀+某种激活函数(0-1阶跃、sigmoid、max-pooling),但是可以一层一层级联好文案。
输入向量连到许多神经元上,这些神经元的输出又连到一堆神经元上,这一过程可以重复很多次。
这和人脑中的神经元很相似:每一个神经元都有一些神经元作为其输入,又是另一些神经元的输入,数值向量就像是电信号,在不同神经元之间传导,每一个神经元只有满足了某种条件才会发射信号到下一层神经元。
当然,人脑比神经网络模型复杂很多:人工神经网络一般不存在环状结构;人脑神经元的电信号不仅有强弱,还有时间缓急之分,就像莫尔斯电码,在人工神经网络里没有这种复杂的信号模式。
神经网络是什么?
生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。
人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。
作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。
人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。
因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。
Matlab里的神经网络是什么意思啊,我是新手,谁能简单通俗地解释下啊?谢谢了!!!
所谓神经网络算法顾名思义是模拟生物神经网络而产生的一种算法,首先需要用一些已知的数据输入到神经网络中,使它知道什么样的数据属于哪一类(训练),然后将未知的数据输入进去,神经网络通过已知的数据对其进行判断来完成分类(分类)。
可以用来进行图像识别、分类;数据预测;曲线拟合等。推荐找本机器学习,人工智能方面的书看。
Hopfield神经网络用python实现讲解?
神经网络结构具有以下三个特点:神经元之间全连接,并且为单层神经网络。每个神经元既是输入又是输出,导致得到的权重矩阵相对称,故可节约计算量。
在输入的激励下,其输出会产生不断的状态变化,这个反馈过程会一直反复进行。
假如Hopfield神经网络是一个收敛的稳定网络,则这个反馈与迭代的计算过程所产生的变化越来越小,一旦达到了稳定的平衡状态,Hopfield网络就会输出一个稳定的恒值。
Hopfield网络可以储存一组平衡点,使得当给定网络一组初始状态时,网络通过自行运行而最终收敛于这个设计的平衡点上。
当然,根据热力学上,平衡状态分为stable state和metastable state, 这两种状态在网络的收敛过程中都是非常可能的。为递归型网络,t时刻的状态与t-1时刻的输出状态有关。
之后的神经元更新过程也采用的是异步更新法(Asynchronous)。Hopfield神经网络用python实现。
BP神经网络算法求讲解
BP神经网络
没有数据还真一眼看不出你的是出了什么原因, 不过你这个应该是做模式识别吧, 识别它是哪一类。
一般做模式识别会用Patternnet,而不用feedforwardnet,主要是Patternnet的输出是在0,1之间的。
楼主可以借鉴matlab自带的螃蟹识别例子,你的matlab路径\toolbox\nnet\nndemos\classify_crab_demo.m 《神经网络之家》 上也有一篇讲解的例子:一个神经网络模式识别的例子------螃蟹识别,楼主可以看看。
更详细的需要楼主贴出数据了。
本文以生动有趣的例子介绍了神经网络的基本概念,包括分类器的工作原理、神经网络的结构及功能,以及如何通过训练让神经网络自动对输入数据进行分类。
1641

被折叠的 条评论
为什么被折叠?



