训练神经网络的详细步骤,神经网络训练样本个数

本文介绍了在MATLAB中如何查看和理解神经网络的参数,包括newrb函数创建的RBF网络参数、训练时间、epochs和MSE。此外,还讨论了BP神经网络训练后的参数设定原则,如初始权值、训练速率和允许误差。并讲解了如何查看BP神经网络的权值矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用MATLAB的newrb函数建立的神经网络,怎么查看网络参数

newrb设计了径向基网络,调用格式:net = newrb[net,tr] = newrb(P,T,goal,spread,MN,DF)P-Q组输入向量组成的R×Q维矩阵;T-Q组目标分类向量组成的S×Q维矩阵;goal-均方误差,默认值为0;spread-径向基函数的扩展速度,默认值为1;MN-神经元的最大数目,默认是QDF-两次显示之间所添加的神经元数目,默认值为25;net-返回值,一个径向基网络;tr-返回值,训练纪录。

谷歌人工智能写作项目:神经网络伪原创

训练好的RBF径向基神经网络这么查看相关参数,例如训练时间,epochs,MSE

newrb()可以用来设计一个近似径向基网络,用newrb()创建RBF网络是一个不断尝试的过程,在创建过程中,需要不断增加中间神经元的个数,直到网络的输出误差满足预先设定的值为止写作猫

和newrb(),newrbe()用于创建一个严格的径向基网络,它能够基于设计向量快速地、无误差地设计一个径向基网络。这就是两个函数运行时间相差很大的原因。

MATLAB中如何获取BP神经网络训练后的参数

sim命令将运行指定的模型。模型执行时使用传递给sim命令的数据,这些数据包括在options结构中设定的参数值。

a=sim(net,[ ])中,net是你的训练网络,后面的中括号是你要训练的结构参数!

神经网络参数如何确定

神经网络各个网络参数设定原则:①、网络节点  网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。

如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1 BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。

②、初始权值的确定  初始权值是不应完全相等的一组值。已经证明,即便确定  存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。

故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。

③、最小训练速率  在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。

因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。④、动态参数  动态系数的选择也是经验性的,一般取0.6 ~0.8。

⑤、允许误差  一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。⑥、迭代次数  一般取1000次。

由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。⑦、Sigmoid参数 该参数调整神经元激励函数形式,一般取0.9~1.0之间。⑧、数据转换。

在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。扩展资料:神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。

主要的研究工作集中在以下几个方面:1.生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2.建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3.算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

参考资料:百度百科-神经网络(通信定义)

用matlabBP神经网络做多元线性回归,求问各参数的拟合值怎么看?

这个要看你选择的激活函数,若是你的激活函数为非线性函数,那就不可能得到各参数的拟合值。如果你所选用的激活函数是线性函数,那么就可以先把输出的表达式写出来,即权向量和输入的矩阵乘积。

得到表达式后就可以得到相应参数的拟合值了。

如何查看matlab神经网络权值矩阵

这个很简单啊,比如说是rbf网络,查看网络权值矩阵方法是:应该是运行完后,在命令窗口输入net.b{1}{1,1}net.b{2}{2,1}你可以在命令窗口输入typenewrbe,查看该函数里面的一些参数,把你需要的输出即可。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值