排序:
默认
按更新时间
按访问量

GAN公式原理推到

上一篇论文中介绍了GAN[1]的原理,这篇继续介绍下它的公式推导的具体的过程,如果需要原理介绍的,可以回到上一篇关于GAN的文章的介绍中。(http://blog.csdn.net/susanzhang1231/article/details/73604302) 这张图给出了GAN训练的过程:首...

2017-08-08 14:38:33

阅读数:2933

评论数:0

多层感知机(multi-layer perceptron)实现手写体分类(TensorFlow)

#multi_layer Perceptron by ffzhang import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time...

2017-08-07 15:07:59

阅读数:403

评论数:0

代码,逻辑回归(logistic_regression)实现mnist分类(TensorFlow实现)

#logistic_regression by ffzhang import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' os.environ["CUDA_VISIBLE_DEVICES"]='2'import numpy as np i...

2017-08-07 12:04:39

阅读数:520

评论数:0

线性回归(linear_regression),多项式回归(polynomial regression)(Tensorflow实现)

#回归 import numpy as np import tensorflow as tf import matplotlib.pyplot as pltn_observations=100 xs=np.linspace(-3,3,n_observations) ys=np.sin(xs)+n...

2017-08-07 11:58:36

阅读数:2240

评论数:0

卷积神经网络CNN经典模型Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning

本篇文章转载自:Bin的专栏blog.csdn.net/xbinworld。 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需。如果读者是初接触CNN,建议可以先看一看“Deep Learning(深度学...

2017-07-10 14:24:24

阅读数:350

评论数:0

均值,白化,Siamese网络,双线性插值

减去均值,白化:在训练一个网络的时候我们经常会做对输入减去均值,以及白化等操作,其目的均是为了加快训练速度。关于原因一般我们输入的图像数据是高度相关的,假设其分布如下图a所示,由于初始化模型参数时,一般参数时0均值的,因此开始的拟合y=Wx+b基本是过原点的,如图b红色线所示,因此网络需要经过多次...

2017-07-09 17:32:32

阅读数:282

评论数:0

学习笔记:生成对抗网络(Generative Adversarial Nets)(附代码)

同时训练两个模型:(1)生成模型G,不断捕捉训练库里真是图片的概率分布,将输入的随机噪声转变成新的样本(即假数据),使其像是一个真的图片。(2)判别模型D,用来估计一个样本来自训练数据的概率,即它可以同时观察真是和假造的数据,并判断这个数据的真假(这个数据是不是从数据集中获取的图片)。在训练的过程...

2017-06-22 14:52:56

阅读数:1813

评论数:0

迹,最大平均差异,核函数等基本概念理解

迹,tied-weights,最大平均差异,核函数,正则化

2017-06-20 11:09:11

阅读数:1499

评论数:0

域适应学习笔记:visual Domain Adaptation

在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation,DA )。因为其任务相同,所以根据上篇博客中的内容可知,域适应属于一种直推式迁移学习。它在2006年由Daumeaume等人首次提出[1]。 1.域适应的一...

2017-06-15 10:04:31

阅读数:1456

评论数:0

迁移学习基础

读A survey on Transfer Learning后的一些想法,仅供参考,若有错误还希望与大家多多交流。1.什么时候需要进行迁移学习:目前大多数机器学习算法均是假设训练数据以及测试数据的特征分布相同。然而这在现实世界中却时常不可行。例如我们我们要对一个任务进行分类,但是此任务中数据不充足...

2017-06-14 16:50:23

阅读数:29267

评论数:1

集成学习 ensemble learning

通过学习周志华老师的机器学习一书,对集成学习做一些笔记。 集成学习(ensemble learning)是通过构建并结合多个学习器来完成学习任务的,因此有写文章中也称其为多分类器系统(multi-classifier system)或者是委员会学习(committee-based learnin...

2016-11-22 10:39:45

阅读数:3102

评论数:0

简析PCA

PCA 具有两个功能:(1)数据降维(2)数据可视化、 本篇文章主要是简述PCA在图像方面的可视化, 下面将结合代码来讲述一下整个PCA的过程: 1.首先获得一些关于自然图像的data,例如需要用在Auto-encoder,或者CNN中的最简单的数据格式,本文我是用到了一个64*2400...

2016-08-12 21:15:47

阅读数:711

评论数:0

范数理解(0范数,1范数,2范数)

刚刚结束,若有错误请多多指教。转载自http://www.zhihu.com/question/20473040/answer/102907063 可以从函数、几何与矩阵的角度去理解范数。 我们都知道,函数与几何图形往往是有对应关系的,这个很好想象,特别是在三维以下的空间内,函数是几何图像的...

2016-08-05 10:54:35

阅读数:25081

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭