要奋斗的人儿~
码龄8年
关注
提问 私信
  • 博客:106,634
    106,634
    总访问量
  • 37
    原创
  • 762,897
    排名
  • 45
    粉丝
  • 0
    铁粉

个人简介:好好学习,天天向上

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2016-12-09
博客简介:

Sweety_Lin的博客

查看详细资料
个人成就
  • 获得56次点赞
  • 内容获得16次评论
  • 获得405次收藏
  • 代码片获得418次分享
创作历程
  • 2篇
    2022年
  • 17篇
    2021年
  • 4篇
    2020年
  • 14篇
    2019年
成就勋章
TA的专栏
  • MATLAB应用
    4篇
  • Python应用
    15篇
  • Python学习
    12篇
  • 临床研究
  • 神经网络学习
    4篇
  • 学习资源
  • Python模拟概率问题
    1篇
  • 面试问题整理
    1篇
  • Python报错
    1篇
  • MRI 原理知识
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络tensorflow图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

PET 晶体类型及性能指标

PET晶体
原创
发布博客 2022.11.15 ·
1571 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

MPR 多层面重建

MPR 多层面重建
原创
发布博客 2022.10.20 ·
2621 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

临床特征 + 影像组学 特征筛选 并 利用逻辑回归进行二分类

任务描述:临床特征 和 影像组学特征 保存在 excel 文件中,需要进行 特征筛选,然后再将筛选出来的特征利用逻辑回归进行二分类。有如下几个问题和需求: 1. excel 中的特征都是以 str 的形式写入表格中的,读取的时候要转换成数字形式;特征之间的尺度不一样,读取出来之后需要按列进行归一化;2. excel 中保存的标签为符号格式:IA, MIA, AAH,...
原创
发布博客 2021.11.23 ·
4847 阅读 ·
11 点赞 ·
1 评论 ·
110 收藏

影像组学特征提取 — 原始图像为dicom格式,mask图像为nrrd格式

原始图像为dicom格式,mask图像为nrrd格式,单个subject影像组学特征提取
原创
发布博客 2021.11.23 ·
4156 阅读 ·
6 点赞 ·
0 评论 ·
55 收藏

计算一个文件夹中 指定类型 文件的数量,python

import osdef count_file_number(filepath, filetype): count = 0 for root, dirname, filenames in os.walk(filepath): for filename in filenames: if os.path.splitext(filename)[1] == filetype: count += 1 return .
原创
发布博客 2021.11.02 ·
468 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

将dicom文件转换为nrrd格式并保存,python

import SimpleITK as sitkimport osdef dcmseries2nrrd(filepath, subID): datapath = os.path.join(filepath, subID) dcms_name = sitk.ImageSeriesReader.GetGDCMSeriesFileNames(datapath) dcms_read = sitk.ImageSeriesReader() dcms_read.SetFileNa.
原创
发布博客 2021.11.02 ·
2433 阅读 ·
0 点赞 ·
0 评论 ·
13 收藏

Python 多元线性回归,留一法测试回归效果

任务描述现在想预测一个项目的 profit,影响 profit 的变量主要有以下三个:R & D profitAdministrationMarketing Spend数据信息这些数据保存在excel表格里格式如下(部分数据):数据链接????:Multiple-Linear-Regression dataset借助散点图来看一下每种因素与 profit 的相关趋势从散点图中可以看出,R&D spend 以及 marketing spen.
原创
发布博客 2021.08.17 ·
1597 阅读 ·
0 点赞 ·
1 评论 ·
10 收藏

python 读取 excel 为矩阵,跳过标题行,按列归一化

如下图所示的 excel 文件,想跳过标题行,读取数据矩阵:代码如下:import numpy as npimport xlrdfrom sklearn import preprocessingdef excel_to_matrix(path, data_norm=True): table = xlrd.open_workbook(path).sheets()[0] row = table.nrows col = table.ncols datama.
原创
发布博客 2021.08.17 ·
2044 阅读 ·
0 点赞 ·
0 评论 ·
17 收藏

Python 从 train_log.txt 中画 loss 曲线,多epoch多batch

需要解决的问题:1. 逐行读取 txt 文件中的训练记录2. 提取 每行中的 loss、epoch 数据信息3. 针对每个 epoch 的多个 batch 计算一个 mean_losstrain_log 中的数据信息和格式:Python 代码import reimport matplotlib.pyplot as pltimport os.path as ospfullpath = osp.abspath('./train_log.txt')filedir,
原创
发布博客 2021.08.13 ·
1810 阅读 ·
2 点赞 ·
0 评论 ·
24 收藏

三门问题,概率推导 + Python模拟

问题描述 三门问题,亦称为蒙提霍尔问题(Monty Hall problem),出自美国的电视游戏节目Let's Make a Deal。问题名字来自该节目的主持人蒙提·霍尔(Monty Hall)。参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门是否会增加参...
原创
发布博客 2021.08.11 ·
1223 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

分类性能评估指标 — 理论篇 — TP、TN、FP、FN,precision、recall、F1、PR曲线,sensitivity、specificity,FPR、TPR、ROC曲线

1. 混淆矩阵:TP,TN,FP,FNTP:true positive,实际为正例,预测为正例TN:true negative,实际为负例,预测为负例FP:false positive,实际为负例,预测为正例FN:false negative,实际为正例,预测为负例2. precision, recall,F1,PR曲线precision:精确率、查准率,预测为正例的样本中,实际为正例的样本所占的...
原创
发布博客 2021.08.11 ·
2128 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

Python 将多列数据写入 csv,并写入标题行

# 1. ROC 计算产生 fpr, tpr, thresholdfpr, tpr, thresholds = roc_curve(label, pred)# 2. 指定要写入的文件名(csv无需自己创建)file_name = 'fpr_tpr_threshold.csv'# 3. 写入csvfile = open(file_name, 'wt', encoding="UTF8")writer = csv.writer(csvfile, delimiter=",")# 标题行写入he.
原创
发布博客 2021.08.11 ·
2949 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

ResNet 论文学习笔记

1. ResNet 提出的背景深层卷积神经网络在图像分类领域取得了很多很棒的进展,因为随着网络层次的加深,feature level 从 low--mid--high 逐步得到丰富,但是通过简单堆叠多层网络真的可以学的更好吗?(Is learning better networks as easy as stacking more layers? )答案是否定的。随着网络层次的加深,会出现两个问题:1)梯度消失/爆炸 (vanishing/exploding gardient)...
原创
发布博客 2021.08.11 ·
560 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python 运行报错 fixture ‘cfg‘ not found

运行一个网络的 training code 时遇到错误:> E fixture 'cfg' not found> available fixtures: cache, capfd, capfdbinary, caplog, capsys, capsysbinary, doctest_namespace, monkeypatch, pytestconfig, record_property, record_testsuite_property, record_xml_attribute,
原创
发布博客 2021.08.11 ·
2586 阅读 ·
4 点赞 ·
2 评论 ·
11 收藏

Python 使程序运行过程中不显示图像窗口,而是将程序运行过程中的图像保存到本地

import matplotlibmatplotlib.use('Agg')# 使程序运行过程中不显示图形窗口import matplotlib.pyplot as plttrainHist, valHist = training.trainNetwork(...)plt.xlabel('epoch')plt.ylabel('loss')plt.plot(valHist, label='validation loss')plt.plot(trainHist, label='trai.
原创
发布博客 2021.08.10 ·
951 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python 将数组保存为图片格式

import numpy as npimport cv2# 如果没有安装 cv2 模块,可以使用命令 # pip install opencv-python==4.4.0.46 来安装# 其中 4.4.0.46 是 Opencv 的版本listdata = [[1, 0, 1], [0, 1, 0], [0, 0, 1]]image_arr = np.array(listdata)cv2.imwrite("filename.png", image_arr)...
原创
发布博客 2021.08.10 ·
1582 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Python将list矩阵保存为nii文件

import nibabel as nibimport numpy as np# 首先读取nii文件并完成维度转换和NAN值替换path='../data/'fileName='lactate.nii'data = nib.load(path+fileName).get_fdata()data = data.transpose(2, 0, 1)dataTest = np.nan_to_num(data)# 某任务产生了新的listdataTestGT=np.mean(dataTest.
原创
发布博客 2021.08.10 ·
516 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Python将数组保存为mat文件

import scipy.io as iotrainHist, valHist = training.trainNetwork(...)# 要保存的变量应该是numpy array# 如果不是,比如保存的时候报错为“list”# 则要先转换为numpy array# data = np.array(data)mat_path = '../losssave/train_loss_N2V.mat'io.savemat(mat_path, {'train_loss': trainHist}).
原创
发布博客 2021.08.10 ·
4347 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

Python读取nii数据,进行维度转换,NAN值替换

import nibabel as nibimport numpy as nppath='../data/'fileName='wr_Lac_78.nii'data = nib.load(path+fileName).get_fdata()data = data.transpose(2, 0, 1)data = np.nan_to_num(data)print(np.shape(data))
原创
发布博客 2021.08.10 ·
940 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

利用 python/keras/tensorflow 计算 DICE系数,评估 3D 分割结果,只挑选特定层面

之前在文章:https://blog.csdn.net/Sweety_Lin/article/details/104199580 中写的DICE计算程序,是将Nii的整个volume计算在内,现想提取T2中有lesion的特定层面来计算DICE:import nibabel as nibimport scipy.io as ioimport osimport numpy as npi...
原创
发布博客 2020.02.17 ·
1677 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏
加载更多