Swire666
码龄3年
求更新 关注
提问 私信
  • 博客:3,490
    3,490
    总访问量
  • 7
    原创
  • 1
    粉丝
  • 16
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
加入CSDN时间: 2022-05-08
博客简介:

Swire666的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得0次评论
  • 获得7次收藏
  • 博客总排名1,537,431名
创作历程
  • 7篇
    2023年
成就勋章
TA的专栏
  • 24考研数学
    5篇
  • 数学建模
  • 数据结构
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

51人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

第三章 微分中值定理

在定理8的条件下,极值点和驻点互不相关。拉格朗日余项的泰勒公式 函数要在n+1阶可导。罗尔中值定理-----> 拉格朗日中值定理------->柯西中值定理。常用的泰勒公式(建议直接背下来,最好是有自己的理解,方便做题)f(a) = f(b) 时,拉格朗日中值定理就是罗尔中值定理。如何找极值点: 1、导数等于0的点 2、导数不存在的点。F(x) = x 时,柯西中值定理就为拉格朗日中值定理。题目条件在哪个点给的信息多,一般就在那个点进行泰勒展开。拐点的判定就是将极值点判定的导数全部抬高一阶。
原创
发布博客 2023.04.09 ·
406 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

第二章 导数与微分

这道题非常的经典,要明白导数、连续之间的关系,A、B选项中都只是求极限趋向于0,但并不知道f(0)的具体值,无法判断函数的连续性(直接排除),C、D选项就要根据阶数的大小来判断是否极限能趋向于0。易错题,分段函数在使用导数定义时,注意观察端点值是属于哪一个分段上。导数、微分、连续三者之间的关系,理解他们的概念、理论(难点)3 若f(x)是周期函数,则f '(x)是周期函数。1 若f(x)是奇函数,则f '(x)是偶函数。2 若f(x)是偶函数,则f '(x)是奇函数。求导法,掌握各种函数的求导方法。
原创
发布博客 2023.04.02 ·
171 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

连续性、间断点以及介值定理、最值定理和零点定理

出现这两个形式时,需要判断是正无穷还是负无穷。
原创
发布博客 2023.03.31 ·
306 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

求极限常用方法(后五种)

当题目中的1改为其他任何数字时,往外提的方法行不通,可以把这个数拆成n个1相加转化为上述题目(思维要求高)夹逼定理:一般先写出容易的那边极限值,根据这个极限值去找另外一边的极限,要保证两边极限相同。1、证明存在性(单调有界),一般是先证有界,找出界限,再证单调性。二级结论:m个正数的n次方和,开方取极限,等于m个底数中最大的那一个。若函数f(x)n阶可导,使用洛必达只能用到n-1阶导数。若函数f(x)n阶连续可导,使用洛必达可用到n阶导数。研究函数整体形态,使用泰勒公式的拉格朗日余项。
原创
发布博客 2023.03.29 ·
1961 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

平衡二叉树

flag=0表示处理序列时没有出现问题,flag=1表示出现问题(但是不能直接退出循环,所以用flag做记号)T->flag=1指的是标记访问过的节点;和斐波那契数列相类似。程序跑完时,要清除标记和释放空间。完全二叉树的高度为log2n。例:判断两棵搜索树是否相同。
原创
发布博客 2023.03.29 ·
57 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

函数极限概念 极限的性质 极限存在准则 无穷大及无穷小

24
原创
发布博客 2023.03.23 ·
505 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

每日一题(day1)

相同树的理解
原创
发布博客 2023.03.13 ·
59 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏