TH_NUM的博客

日常积累

KMeans与深度学习自编码AutoEncoder结合提高聚类效果

特征是用户的消费商品的消费金额,原始数据(部分)是这样的: id,goods_name,goods_amount 1,男士手袋,1882.0 2,淑女装,2491.0 3,淑女装,2492.0 2,女士手袋,345.0 4,基础内衣,328.0 5,商务正装,4985.0 5,时尚,969....

2018-04-25 01:14:54

阅读数:40

评论数:0

scipy.sparse.hstack vstack

首先格式是符合 coo_matrix 才能使用sparse进行拼接。 hstack : 将矩阵按照列进行拼接 from scipy.sparse import coo_matrix, hstack,vstack A = coo_matrix([[1, 2], [3, 4]]) print(A...

2018-04-22 22:37:51

阅读数:414

评论数:0

基于sklearn 的one hot encoding

1.one hot编码的由来 在实际的应用场景中,有非常多的特征不是连续的数值变量,而是某一些离散的类别。比如在广告系统中,用户的性别,用户的地址,用户的兴趣爱好等等一系列特征,都是一些分类值。这些特征一般都无法直接应用在需要进行数值型计算的算法里,比如CTR预估中最常用的LR。那针对这种情况最...

2018-04-22 21:11:23

阅读数:24

评论数:0

feed_dict tf 报错提示ValueError: setting an array element with a sequence.

print (sess.run(output,feed_dict={input1:[[1.0,2.0,3.0]],input2:[[2.0],[3.0],[4.0]]}))就能运行. 错误原因: feed_dict格式本身不能用tf.constant赋值的或者tf.get_variable赋值。

2018-04-17 18:18:29

阅读数:20

评论数:0

机器学习心得

神经网络为什么具有对非线性关系进行建模的能力? 1.每个神经元会先应用一个非线性激活函数。正是由于这个激活函数,神经网络具有对非线性关系进行建模的能力 持续更新中….. ...

2018-04-17 01:26:19

阅读数:14

评论数:0

python 实现 机器学习(周志华) 参考答案 第五章 神经网络 5.7 RBF 神经网络

#-*- coding:utf-8 -*- import re import xlrd import xdrlib,sys import xlwt import datetime import time import numpy as np def rand(a, b): #返回a 行 n 列 ...

2018-04-16 00:19:36

阅读数:68

评论数:0

HMM(Forward algorithm)向前算法

由马尔科夫模型MM可知:对于一个系统,由一个状态转至另一个状态的转换过程中,存在着转移概率,并且这种转移概率可以依据其紧接的前一种状态推算出来,与该系统的原始状态和此次转移前的马尔可夫过程无关。隐马尔可夫模型(HiddenMarkov models,HMM)是马尔可夫链的一种,它的状态不能直接观察...

2016-06-02 21:04:22

阅读数:1511

评论数:0

VC维

为什么引入VC维 PAC中以|H |来刻画样本复杂度,它存在以下不足:可能导致非常弱的边界;对于无限假设空间的情形, 1/b*(log2(|H|)+log2(1/d))((2)式)根本无法使用。因此有必要引入另一度量标准VC 维。假设空间的VC 维, 用VCdim(H)表示, 被定义为最大的样本...

2016-06-02 12:32:53

阅读数:3038

评论数:0

PAC可学习性

PACPAC可学习性 训练学习器的目标是,能够从合理数量的训练数据中通过合理的计算量可靠的学习到知识。 机器学习的现实情况: 1、除非对每个可能的数据进行训练,否则总会存在多个假设使得真实错误率不为0,即学习器无法保证和目标函数完全一致 2、训练样本是随机选取的,训练样本总有一定的误导性什...

2016-06-02 12:21:47

阅读数:2130

评论数:0

机器学习---假设的评估问题

机器学习的假设理论:任一假设若在足够大的训练样例集中很好的逼近目标函数,它也能在未见实例中很好地逼近目标函数。 伯努利分布的期望 np 方差 np(1-p) 训练样例(Sample)的错误率:errors 测试数据(data)的错误率:errorD评估偏差 bias=E(errors)-...

2016-06-02 12:12:32

阅读数:619

评论数:0

K-means

K-Means 基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标. k个初始类聚类中心点的选取对聚类结果具有较大的 公式 影响,因为在该算法第一步中是随机的选取任意k...

2016-06-02 12:07:06

阅读数:406

评论数:0

决策树

决策树决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶...

2016-06-02 12:02:33

阅读数:1271

评论数:0

集成学习

集成学习:有效的前提: 1. 每个弱分类器的错误率不能高于0.5。 2.弱分类器之间的性能要有较大的差别,否则集成效果不是很好。 集成学习的实验性结论: Boosting方法的集成分类器效果明显优于bagging,但是在某些数据集boosting算法的效果还不如单个分类器的。 使用...

2016-06-02 11:35:23

阅读数:754

评论数:0

KNN

KNNKNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方 法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。KNN复杂度分析kNN算法本身简单有效,它是一种l...

2016-06-02 11:21:17

阅读数:1111

评论数:0

机器学习过拟合问题

过拟合过拟合的定义 在对已知的数据集合进行学习的时候,我们选择适应度最好的模型最为最终的结果。虽然我们选择的模型能够很好的解释训练数据集合,但却不一定能够很好的解释测试数据或者其他数据,也就是说这个模型过于精细的刻画了训练数据,对于测试数据或者其他新的数据泛华能力不强。发生过拟合的原因 1)使...

2016-06-02 11:16:48

阅读数:470

评论数:0

贝叶斯学习、MAP、ML

贝叶斯估计与有监督学习如何用贝叶斯估计解决有监督学习问题? 对于有监督学习,我们的目标实际上是估计一个目标函数f : X->Y,,或目标分布P(Y|X),其中X是样本的各个feature组成的多维变量,Y是样本的实际分类结果。假设样本X的取值为xk,那么,根据贝叶斯定理,分类结果为yi的概...

2016-06-02 11:11:12

阅读数:2446

评论数:0

Mistake Bound Framework(出错界限模型)

Mistake Bound Framework(出错界限模型)Mistake Bound Framework So far: how many examples needed? What about: how many mistakes before convergence? Let’s cons...

2016-05-07 19:33:02

阅读数:425

评论数:0

Agnostic Learning (不可知学习)

Agnostic Learning (不可知学习) Computational Learning Theory (Cont.)The Vapnik-Chervonenkis(VC) dimension- Shattering a set of instances - VC dimension ...

2016-05-07 19:29:27

阅读数:552

评论数:0

PAC Learning Framework可能近似正确学习

Coffe TimeESP GAME用户做游戏的时候,对图片做语义标注SAmple Complexity: How many training examples are sufficient to learn the target concept? Version space intro...

2016-05-07 19:17:29

阅读数:2277

评论数:0

概率图模型

人工智能coffe time 人工智能的新纪元 自然语言理解 智能机器人 上下文感知计算 视频自动识别 语音到语音的翻译 面向应用的机器学习 占据的份额较大计算机视觉:eigenfaces(图像向量) 8维的向量80%的准确度表征人脸Decorrelation: if D=M x~=G的转...

2016-04-25 19:53:46

阅读数:218

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭