[SPSS]典型相关分析的SPSS实现——开卷和闭卷学科成绩的典型相关分析实例

  • 数据情况

  • 调用宏进行典型相关分析

1、按File→New→Syntax的顺序新建一个语句窗口。在语句窗口中输入下面的语句:

INCLUDE 'C:\Program Files (x86)\IBM\SPSS\Statistics\22\Samples\Simplified Chinese\Canonical correlation.sps'.

       CANCORR SET1=x1 x2 /

       SET2=y1 y2 y3 / .

2、两组变量之间的相关性

3、两组变量之间的相关性矩阵

4、给出典型相关系数:

由图可以看到,第一典型相关系数是0.617,第二典型相关系数是0.180

5、典型相关性的显著性检验

在0.05的显著性水平下,只有第一对典型相关是显著的

6、两组典型变量的标准化系数

由于本例中数据单位并不统一,因此我们使用两组典型变量标准化系数

来自闭卷的第一典型变量为U1=-0.049X1-0.044X2

来自开卷的第一典型变量为V1=-0.849X3-0.470X4+0.446X5

从而闭卷的典型变量主要由X1和X2共同决定,但是开卷的典型变量主要由X3决定

7、典型冗余分析

  1. 闭卷的变量被自身的第一典型变量解释了71.1%。
  2. 开卷的变量被自身的第一典型变量解释了44%5。
### SPSS 中的相关性分析 #### Pearson 相关性分析 为了评估两个连续变量之间的线性关系强度方向,在SPSS中可以执行Pearson相关系数计算。选择菜单栏上的`Analyze > Correlate > Bivariate`,将感兴趣的变量移入右侧的框内并点击OK来运行分析[^1]。 对于多组间的两两相关性分析,同样通过上述路径进入Bivariate Correlations对话框,然后可以选择多个变量加入到Variables列表里,以此一次性查看这些选定变量间所有的成对组合关联情况。 #### Spearman Kendall Tau-b 非参数相关性测 当数据不符合正态分布假设或存在等级顺序而非精确测量值的情况下,则应考虑采用Spearman rho 或Kendall's tau-b作为替代方案来进行非参数化相关性检测。这依然可以通过相同的界面完成设置,只需在Correlation Coefficients选项下做出适当的选择即可[^4]。 #### 协方差分析 (ANCOVA) 如果希望控制额外的影响因子(协变量),从而更精准地比较不同水平下的因变量均值差异,那么就需要应用协方差分析技术。此过程涉及指定模型中的固定效应项以及任何必要的交互作用项,并可能调整后的平均数估计值报告给读者了解各组经校准之后的真实表现状况。 关于F(3,19)=3.4表达式的含义解释如下:这里的第一个数值代表分子自由度(df between),它等于自变量子类别数量减去一;而分母自由度(df within)则是总样本量n减掉所有独立群组数目k再加一的结果。因此在这个例子当中,有四个不同的实验条件被对比(n=23,k=4),得到的是三个相互独立的变化源加上剩余误差部分共同构成的整体变异分解结构。 #### 典型相关性分析(CCA) 针对想要探究两套或多套观测指标体系之间潜在联系的情形,典型相关性提供了一种有效手段。尽管某些版本可能会遇到模块缺失的问题,但按照特定指导操作能够解决这一难题——即定位至安装目录内的样例脚本位置并将之加载进来辅助完成任务[^5]。 ```python INCLUDE 'D:\SPSS\Samples\English\Canonical correlation.sps'. CANCORR set1=... /set2=... ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值