Ridge Regression is a linear regression with L2 regularization.
1. 线性回归(Linear Regression, LR)
LR就是用线性函数去拟合一组数据,使得均方误差(Mean Square Error, MSE)最小。
拟合函数:
损失函数(MSE):
LR是最基本的机器学习方法之一,常用于由多个观测变量预测因变量。在预测情形下等效于维纳滤波器(Wienar Filter),因为输入的是时间序列。
import numpy as np
from sklearn.linear_model import LinearRegression
x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1,1))
#print(RegreSet)
y = np.array([5, 20, 14, 32, 22, 38])
print(x, y)
'''Create a model and fit it'''

岭回归(Ridge Regression)是线性回归的一种,通过引入L2正则化来防止过拟合。它修改了损失函数,添加了一个权重向量的平方和项,超参数α控制正则化强度。与Lasso回归不同,Ridge回归更适用于特征之间存在相关性的场景。
最低0.47元/天 解锁文章
1560

被折叠的 条评论
为什么被折叠?



