Basics Algorithms| 岭回归(Ridge regression)

岭回归(Ridge Regression)是线性回归的一种,通过引入L2正则化来防止过拟合。它修改了损失函数,添加了一个权重向量的平方和项,超参数α控制正则化强度。与Lasso回归不同,Ridge回归更适用于特征之间存在相关性的场景。
摘要由CSDN通过智能技术生成

Ridge Regression is a linear regression with L2 regularization.

1. 线性回归(Linear Regression, LR)

LR就是用线性函数去拟合一组数据,使得均方误差(Mean Square Error, MSE)最小。

拟合函数:f(x)=w^{T}x+b

损失函数(MSE):J=\frac{1}{n} \sum_{i=1}^{n} (f(x_{i})-y_{i})^{2}

LR是最基本的机器学习方法之一,常用于由多个观测变量预测因变量。在预测情形下等效于维纳滤波器(Wienar Filter),因为输入的是时间序列。

import numpy as np
from sklearn.linear_model import LinearRegression

x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1,1))
#print(RegreSet)
y = np.array([5, 20, 14, 32, 22, 38])
print(x, y)

'''Create a model and fit it'''
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值