解决数据拟合问题最重要方法是最小二乘法和回归分析。如,我们需要从一组测定的数据(例如N个点(xi,yi)(i=0,1,…,m))去求得自变量 x 和因变量 y 的一个近似解表达式 y=f(x),这就是由给定的 N 个点(xi,yi)(i=0,1,…,m)求数据拟合的问题。(注意数据拟合和数据插值是不同的,举个例子:因为测量数据往往不可避免地带有测试误差,而插值多项式又通过所有的点(xi,yi),这样就使插值多项式保留了这些误差,从而影响逼近精度,使得插值效果不理想)
所以使用最小二乘法曲线拟合法:即寻求已知函数的一个逼近函数y=f(x),使得逼近函数从总体与已知函数的偏差按某种方法度量能达到最小,而又不一定通过全部的点(xi,yi),这个时候就需要使用最小二乘法曲线拟合法。
数据拟合的具体做法是:对给定的数据(xi,yi)(i=0,1,…,m),在取定的函数类 ϕ \phi ϕ中使误差 r i = p ( x i ) − y i ( i = 0 , 1 , … , m ) r_{i}=p\left(x_{i}\right)-y_{i}(i=0,1, \ldots, m) ri=p(xi)−yi(i=0,1,…,m)的平方和最小,即
[ ∑ i = 0 m r i 2 = ∑ i = 0 m [ p ( x i − y i ) ] 2 ] min \left[\sum_{i=0}^{m} r_{i}^{2}=\sum_{i=0}^{m}\left[p\left(x_{i}-y_{i}\right)\right]^{2}\right]_{\min } [i=0∑mri2=i=0∑m[p(xi−yi)]2]min
从几何意义讲,即寻求与给定点 x i − y i ( i = 0 , 1 , … , m ) x_{i}-y_{i}(i=0,1, \ldots, m) xi−yi(i=0,1,…,m) 的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类 ϕ \phi ϕ 可有不同的选取方法。
MATLAB工具箱中提供了最小二乘拟合函数 polyfit() -->多项式曲线拟合
具体调用格式有三种:
- P = polyfit(X,Y,N)