csuoj1023修路( )

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/T__TSZ/article/details/76099001

Description

前段时间,某省发生干旱,B山区的居民缺乏生活用水,现在需要从A城市修一条通往B山区的路。假设有A城市通往B山区的路由m条连续的路段组成,现在将这m条路段承包给n个工程队(≤ ≤ 300)。为了修路的便利,每个工程队只能分配到连续的若干条路段(当然也可能只分配到一条路段或未分配到路段)。假设每个工程队修路的效率一样,即每修长度为1的路段所需的时间为1。现在给出路段的数量m,工程队的数量n,以及m条路段的长度(这m条路段的长度是按照从A城市往B山区的方向依次给出,每条路段的长度均小于1000),需要你计算出修完整条路所需的最短的时间(即耗时最长的工程队所用的时间)。

Input

第一行是测试样例的个数T ,接下来是T个测试样例,每个测试样例占2行,第一行是路段的数量m和工程队的数量n,第二行是m条路段的长度。

Output

对于每个测试样例,输出修完整条路所需的最短的时间。

Sample Input

2
4 3
100 200 300 400
9 4
250 100 150 400 550 200 50 700 300

Sample Output

400
900 

AC代码

#include<iostream>
#include<algorithm>
using namespace std;
int road[305];
int main()
{
    int T,N,M,sum,big;
    cin>>T;
    while(T--)
    {
        cin>>N>>M;
        sum=0;              
        big=0;              
        for(int i=0;i<N;i++)
        {
            cin>>road[i];
            sum+=road[i];          //求出路段长度之和
            big=max(big,road[i]);  //求出最长的路段长度
        }
        int low=big,high=sum,mid;  //二分的区间及为sum和big之间
                                                                      //因为1支队伍修完全程需sum,  m支队伍修完全程需big.所以n支队伍修完全程所需的时间在其中二分
        while(high>low)
        {
            mid=(low+high)/2;
            sum=0;
            int cnt=0;
            for(int i=0;i<N;i++)
            {
                sum+=road[i];
                if(sum>mid)
                {
                    sum=road[i];
                    cnt++;     //求出在该时间(距离)条件下最少需要的队伍数量
                }
            }
            if(cnt<M)          //数量不足M说明修的时间过长,不合适,缩小上边界
                high=mid;
            else
                low=mid+1;
        }
        cout<<low<<endl;       //此时low=high
    }
    return 0;
}





阅读更多
换一批

没有更多推荐了,返回首页