一 数学基础
二 基础概念
三 模型优化
四 模型评估
五 机器学习模型
六 深度学习模型
6.1 前馈神经网络
6.2 卷积神经网络
6.3 循环神经网络
6.4 注意力机制和Transformer
2017 NIPS 《Attention Is All You Need》PyTorch实现
如何用PyTorch训练一个Transformer语言模型学习词嵌入
如何利用PyTorch写一个Transformer实现英德互译
6.5 图神经网络
图神经网络框架-PyTorch Geometric(PyG)的使用
如何利用PyG实现一个图卷积神经网络并在Cora数据集上进行训练
七 数字图像处理基础
八 应用
8.1 目标检测
8.2 OCR
8.3 推荐系统
8.4 知识蒸馏
8.5 扩散模型
九 杂项
2018 CVPR 《Squeeze-and-Excitation Networks》 PyTorch实现
2021 《Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks》 Pytorch实现
2018 BMCV 《BAM: Bottleneck Attention Module》Pytorch实现
2018 ECCV 《CBAM: Convolutional Block Attention Module》 PyTorch实现
2019 CVPR 《Selective Kernel Networks》 PyTorch实现
如何利用PyTorch实现一个Encoder-Decoder结构进行英法互译
1088

被折叠的 条评论
为什么被折叠?



