算法专栏目录

一 数学基础

二 基础概念

三 模型优化

四 模型评估

五 机器学习模型

机器学习模型

六 深度学习模型

6.1 前馈神经网络

6.2 卷积神经网络

6.3 循环神经网络

如何利用PyTorch编写一个循环神经网络进行字符串的分类

6.4 注意力机制和Transformer

2017 NIPS 《Attention Is All You Need》PyTorch实现

如何用PyTorch训练一个Transformer语言模型学习词嵌入

如何利用PyTorch写一个Transformer实现英德互译

6.5 图神经网络

图神经网络

图神经网络框架-PyTorch Geometric(PyG)的使用

如何利用PyG实现一个图卷积神经网络并在Cora数据集上进行训练

七 数字图像处理基础

数字图像处理

八 应用

8.1 目标检测

计算机视觉-目标检测-CSDN博客

8.2 OCR

8.3 推荐系统

传统推荐方法相关论文和代码

深度学习推荐算法模型-论文和PyTorch实现

8.4 知识蒸馏

知识蒸馏

8.5 扩散模型

九 杂项

2018 CVPR 《Squeeze-and-Excitation Networks》 PyTorch实现

2021 《Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks》 Pytorch实现

2018 BMCV 《BAM: Bottleneck Attention Module》Pytorch实现

2018 ECCV 《CBAM: Convolutional Block Attention Module》 PyTorch实现

2019 CVPR 《Selective Kernel Networks》 PyTorch实现

如何利用PyTorch实现一个Encoder-Decoder结构进行英法互译

PyTorch的torchvision中带有的计算机视觉数据集

PyTorch torchtext中带有的自然语言处理数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Old_Summer

感谢老板!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值