高数第四章 常微分方程
前言
这一部分内容在数学领域,实际上是非常复杂深奥的,费曼称之为“上帝的语言”。
但考研数学中,只选择一小部分简单的进行考察,因此不要太过害怕。
对于本章节,无需有多么深入的理解和钻研,掌握每种类型解题方法即可,反倒是计算能力显得尤为重要。
基础
微分方程,顾名思义就是含有y‘,y ’’,y ’‘’等的方程。考研数学中,最难也就考到三阶,二阶出现的比较多,三阶极小概率出现。
1 一阶微分方程
首先是一阶微分方程,也就是方程中只有一阶的y‘,很容易理解。
其中分为三类:
-
变量可分离型
-
齐次型
-
一阶线性微分方程方程
第一种是最简单的形式,叫变量可分离型。
直白点儿说,就是y和x两个变量,能分离到等号左右两侧,写成P(y)dy = P(x)dx的形式,然后直接两边积分即可。
第二种稍微复杂点儿,叫齐次型。
标志就是变量y和x拆不散了,在方程里是“y/x”作为整体的形式出现。这时候,就要想办法,如何化简成简单的形式,求出方程。
于是我们可以 设 y/x = u ,转换为关于u的一阶微分方程,也就是上述的第一种形式,解出即可。
第三种是线性微分方程。
何谓线性呢?y=kx+b是最简单的线性方程,放到此

本文主要介绍了考研数学中常微分方程的基础知识,包括一阶微分方程的变量可分离型、齐次型和一阶线性微分方程,以及高阶微分方程的直接积分、缺y型和缺x型解法。同时讲解了线性微分方程的解的结构和二阶常系数线性微分方程的特征方程法。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



