# LeetCode 873 Length of Longest Fibonacci Subsequence (hash 或 dp)

A sequence X_1, X_2, ..., X_n is fibonacci-like if:

• n >= 3
• X_i + X_{i+1} = X_{i+2} for all i + 2 <= n

Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0.

(Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8]is a subsequence of [3, 4, 5, 6, 7, 8].)

Example 1:

Input: [1,2,3,4,5,6,7,8]
Output: 5
Explanation:
The longest subsequence that is fibonacci-like: [1,2,3,5,8].


Example 2:

Input: [1,3,7,11,12,14,18]
Output: 3
Explanation:
The longest subsequence that is fibonacci-like:
[1,11,12], [3,11,14] or [7,11,18].


Note:

• 3 <= A.length <= 1000
• 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
• (The time limit has been reduced by 50% for submissions in Java, C, and C++.)

61ms，时间击败75.8%

class Solution {
public int lenLongestFibSubseq(int[] A) {
int n = A.length;
HashSet<Integer> set = new HashSet<>();
for (int i = 0; i < A.length; i++) {
}
int ans = 0, cur = 0, a = 0, b = 0, c = 0;
for (int i = 0; i < A.length; i++) {
for (int j = i + 1; j < A.length; j++) {
a = A[i];
b = A[j];
c = a + b;
cur = 0;
while (set.contains(c)) {
cur++;
a = b;
b = c;
c = a + b;
}
ans = Math.max(ans, cur == 0 ? 0 : cur + 2);
}
}
return ans;
}
}

48ms，时间击败88.11%

class Solution {
public int lenLongestFibSubseq(int[] A) {
HashSet<Integer> set = new HashSet<>();
int ma = 0;
for (int i = 0; i < A.length; i++) {
if (A[i] > ma) {
ma = A[i];
}
}
int ans = 0, cur = 0, a = 0, b = 0, c = 0;
for (int i = 0; i < A.length; i++) {
if (ans >= A.length - i - 3) {
break;
}
for (int j = i + 1; j < A.length; j++) {
c = A[i] + A[j];
if (c > ma) {
break;
}
if (set.contains(c)) {
a = A[i];
b = A[j];
cur = 2;
while (set.contains(c)) {
cur++;
a = b;
b = c;
c = a + b;
}
if (cur > ans) {
ans = cur;
}
}
}
}
return ans;
}
}

21ms，时间击败98.48%

class Solution {
public int lenLongestFibSubseq(int[] A) {
int n = A.length, ans = 0, sum = 0;
int[][] dp = new int[n][n];
for (int i = 1; i < n; i++) {
int l = 0, r = i - 1;
while (l < r) {
sum = A[l] + A[r];
if (sum < A[i]) {
l++;
} else if (sum > A[i]) {
r--;
} else {
dp[r][i] = dp[l][r] + 1;
if (dp[r][i] > ans) {
ans = dp[r][i];
}
l++;
r--;
}
}
}

return ans == 0 ? 0 : ans + 2;
}
}