语音信号的MFCC特征提取——Matlab仿真

165 篇文章 52 订阅 ¥59.90 ¥99.00
本文介绍了使用Matlab进行语音信号MFCC特征提取的步骤,包括预处理、功率谱密度计算、应用Mel滤波器组、对数压缩和离散余弦变换。通过这些步骤,可以得到用于语音识别和处理的有效特征表示。
摘要由CSDN通过智能技术生成

语音信号的MFCC特征提取——Matlab仿真

MFCC(Mel频率倒谱系数)是一种常用的语音信号特征提取方法,广泛应用于语音识别和语音处理领域。本文将介绍如何使用Matlab进行MFCC特征提取的仿真,并提供相应的源代码。

MFCC特征提取的过程可以分为以下几个步骤:

步骤一:预处理
首先,需要对语音信号进行预处理,包括去除静音段、分帧和加窗。这里我们使用Matlab的语音处理工具包来完成预处理过程。

% 加载语音信号
[x, fs] = audioread('speech.wav');

%
MFCC (Mel-frequency cepstral coefficients) 特征提取是一种广泛应用于语音识别和信号处理领域的预处理技术,它将音频信号转换成一组可用于机器学习分析的数值特征。在 MATLAB 中实现 MFCC 的基本步骤如下: 1. **加载音频数据**:首先需要读取音频文件并将其转换成一个数字信号。 ```matlab [signal, Fs] = audioread('your_audio_file.wav'); ``` 2. **预加重**:通过高通滤波增强高频部分,通常使用一个斜坡滤波器(如 Hamming 或 Hanning 窗口)。 ```matlab preEmphasis = [1 -0.97]; filteredSignal = filter(preEmphasis, 1, signal); ``` 3. **分帧和窗函数应用**:将信号划分为固定长度的小段,并使用汉明窗等窗口函数来减少边缘效应。 ```matlab frameSize = 0.025; % 25 ms frameOverlap = 0.01; % 10 ms overlap frames = buffer(filteredSignal, frameSize*Fs, frameOverlap*Fs, 'nodelay'); window = hamming(size(frames, 2)); frames = frames .* window; ``` 4. **短时傅立叶变换 (STFT)**:计算每帧信号的频域表示。 ```matlab winLength = round(frameSize * Fs); % FFT size hopSize = round(frameOverlap * Fs); [STFT, ~] = spectrogram(frames, hann(winLength), winLength, hopSize, Fs); ``` 5. **梅尔滤波器组 (Mel Filterbank)**:将 STFT 转换到梅林频率尺度上,这一步模拟人耳对声音感知的特点。 ```matlab melBank = melFilterBank(Fs, winLength, winLength/hopSize); mfccCoeffs = abs(STFT) ./ sum(abs(STFT), 2, 'omitnan')'; mfccCoeffs = melBank * mfccCoeffs; ``` 6. **离散余弦变换 (DCT)**:对得到的 Mel 频谱系数做 DCT 变换,保留前几个系数作为 MFCC 特征。 ```matlab numCoeffs = 13; % 通常选择13个系数,也可以根据需求调整 mfccFeatures = dct(mfccCoeffs(:, 1:numCoeffs), 2); ``` 7. **归一化**:为了提高稳定性,有时会对 MFCC 特征进行归一化,例如除以最大值或标准化。 最后,`mfccFeatures` 就包含了 MFCC 的特征向量。完整的代码会包括上述步骤,并可能包含其他选项如剔除直流分量、动态范围压缩等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值