【吴恩达机器学习2022学习笔记】课程1 -- 机器学习基础

吴恩达大佬又重新录了机器学习视频,借此机会重温并做笔记简单记录一下。课程共分成三门,首先是机器学习基础。

课程链接:https://www.bilibili.com/video/BV19B4y1W76i/?spm_id_from=333.788.recommend_more_video.1&vd_source=337295bc6e342e05e35b53ca8f411ebe

课程1-- 机器学习基础

1. 监督学习

给定X Y使得模型学习后可以对给定的任意X得到对应的Y。
预测问题:(X到Y的映射)例如预测房价,属于回归模型,可用直线或者曲线进行拟合。
分类问题: 预测类别(二分类0,1),找到对应的分类边界。
找到对应的分类边界

2. 无监督学习

数据与任何输出标签都不相关。没有数据标签,只有x没有y(Finding something interesting in unlabeled data)
聚类算法clustering: 将无标签数据分成两类或多类。
异常检测Anomaly detection: 金融欺诈等。
降维 Demensionality reduction: 将大数据集分成小数据集,尽可能减少数据丢失。

3. 线性回归模型

简单的线性回归:f(x)=wx+b
在这里插入图片描述

4. 代价函数

f(x)=wx+b,w和b是两个可学习的参数,为了衡量w,b对于真实值的匹配程度,采用代价函数来计算模型预测的y与真实值之间的差异。
在这里插入图片描述
计算真实值与模型预测值之间的误差。图中J(w,b)就是代价函数的定义,采用均方差计算误差。
目标:
minimize J(w,b),线性回归的本质就是找到w,b使得代价函数J(w.b)的值最小。
在这里插入图片描述
采用等高线可视化代价函数J
在这里插入图片描述

5.梯度下降

通过不断梯度下降,找到使得代价函数最小的点。
在这里插入图片描述
梯度下降流程:同时更新w和b,α是学习率(即下降幅度)乘上w和b相对于J(w,b)的导数(即梯度下降的方向,想象二次函数切线)。

在这里插入图片描述

学习率α:
学习率越小,梯度下降越慢,需要多次梯度下降才能达到代价函数最小值,学习率越大,梯度下降越快,但容易跳过最小值,出现过拟合现象。可采用逐渐减小的学习率。

求导过程:
在这里插入图片描述

6.多种特征向量化

在python中,向量之间相乘采用np.dot(w,x)来进行计算
在这里插入图片描述
在这里插入图片描述

多元回归梯度下降就是将多个w,b逐一进行梯度下降算法,与上述计算相同。

7.特征工程

特征缩放:
通过适当的缩放数据的范围,使得参数取值范围在一个比较合理(容易计算)的区间,有利于后续梯度下降和可视化。
在这里插入图片描述
学习率选择:
按照我的经验来说,学习率一般从大往小开始实验。0.1、0.01、0.001…,可以使用渐变学习率,通过观察loss图像判断是否收敛。

特征工程:
这里主要是说选择合适的特征进行建模,会直接影响模型的拟合,因此要对研究的项目进行一个深入的理解,判断选择哪些特征作为模型的影响因素。

8.logistic 回归

通过激活函数,将函数的输出映射到0~1之间。
这里采用的是sigmiod激活函数,通常设置一个阈值0.5,高于阈值被认为是1,低于阈值被认为是0。根据分类可以得到一条决策边界线。
在这里插入图片描述
Logistic回归的损失函数

也就是交叉熵损失函数

按照对数的图像,可以将损失函数定义为如下公式:
在这里插入图片描述
两者的图像如下:
在这里插入图片描述
在这里插入图片描述

合并起来:
在这里插入图片描述

9.过拟合问题

什么是过拟合?
过拟合是指训练误差和测试误差之间的差距太大
在这里插入图片描述
解决方法:

1、采用更多的训练集
2、减少选择的特征:

减少一些过度影响分类结果的特征作为影响因素,类似于神经网络中的dropout。
3、正则化:
通过正则化,控制变量w的值使得模型不被修正的太严重。

10.正则化

减小w1 w2 w3…参数大小,使得模型不易出现过拟合现象。
思想:在最小化代价函数的同时,通过λ最小化参数的值。
在这里插入图片描述
梯度下降:
在这里插入图片描述
logistic回归正则化:
在这里插入图片描述
梯度下降:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

特卡的风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值