论文浅尝 - AAAI2020 | 通过知识库问答改善知识感知对话生成

论文提出TransDG模型,解决对话系统整合外部知识的问题。TransDG通过迁移KBQA模型的能力,实现知识选择和语义理解,生成信息性对话。多步解码策略和响应引导注意机制确保生成响应的合理性和相关性。实验表明,TransDG在语法性、实体生成和人类评估上均表现出色。
摘要由CSDN通过智能技术生成

论文笔记整理:胡楠,东南大学博士。


来源:AAAI 2020

动机

现在的将外部知识整合到对话系统中的研究仍然存在一定缺陷。首先,先前的方法难以处理某些语句的主语和关系,比如当语句中的相关实体彼此相距较远时。其次,先前的基于生成的方法逐字生成响应,缺乏全局视角导致语句与潜在响应(实体展开)之间的知识联系被忽略了,使得响应中生成的知识(实体)相对于语句而言是不合理的。最后,大多数以前的研究仅通过合并知识库中来丰富实体或三元组以进行生成响应,但是在输入语句确实很短的情况下,很难检索相关事实并产生有意义的响应。

为了解决上述挑战,论文提出了一种知识感知对话生成模型TransDG,该模型可以将知识库中的外部知识有效地融合到seq2seq模型中,从而通过迁移问题建模和知识匹配能力来生成信息性对话。

贡献

文章的主要贡献:

(1)提出了一种新颖的知识感知对话生成模型TransDG,该模型将问题理解和事实提取能力从预先训练的KBQA模型中转移出来,以促进事后理解能力和KB事实知识选择能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>