开源开放 | 欢迎选修浙江大学《知识图谱》开放共享慕课

点击“阅读原文”或扫描图中二维码进入课程

教学计划

第一章知识图谱概论

1.1 语言与知识

1.2 知识图谱的起源

1.3 知识图谱的价值

1.4 知识图谱的技术内涵

第二章知识图谱的表示

2.1 什么是知识表示

2.2 人工智能历史发展长河中的知识表示

2.3 知识图谱的符号表示方法

2.4 知识图谱的向量表示方法

第三章知识图谱的存储与查询

3.1 基于关系型数据库的知识图谱存储

3.2 基于原生图数据库的知识图谱存储

3.3 原生图数据库实现原理浅析

第四章知识图谱的抽取与构建

4.1 重新理解知识工程与知识获取

4.2 知识抽取——实体识别与分类

4.3 知识抽取——关系抽取与属性补全

4.4 知识抽取——概念抽取

4.5 知识抽取——事件识别与抽取

4.6 知识抽取技术前沿

第五章知识图谱推理

5.1 什么是推理

5.2 知识图谱推理简介

5.3 基于符号逻辑的知识图谱推理

5.4 基于表示学习的知识图谱推理

第六章知识图谱融合

6.1 知识图谱融合概述

6.2 概念层融合——本体匹配

6.3 实例层的融合——实体对齐

6.4 知识融合技术前沿

第七章知识图谱问答

7.1 智能问答系统概述

7.2 基于查询模版的知识图谱问答

7.3 基于语义解析的知识图谱问答

7.4 基于检索排序的知识图谱问答

7.5 基于深度学习的知识图谱问答

第八章图算法与图数据分析

8.1 图的基本知识

8.2 基础图算法

8.3 图神经网络与图表示学习

8.4 图神经网络与知识图谱

第九章知识图谱技术发展

9.1 多模态知识图谱

9.2 知识图谱与语言预训练

9.3 事理知识图谱

9.4 知识图谱与低资源学习

 


 

OpenKG

开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值