论文浅尝 | ExCAR: 一个事件图知识增强的可解释因果推理框架

076cb1b0e6ff2afa709eb102d58fb2f7.png

笔记整理:朱珈徵,天津大学硕士

链接:https://aclanthology.org/2021.acl-long.183.pdf

动机

因果推理旨在理解因果之间的一般因果相关性,对于各种人工智能应用都有很大的价值。先前的研究主要是基于从手工注释的因果事件对中归纳出的知识来推断事件之间的因果关系。然而,关于因果关系的更多证据信息仍未被利用。通过整合这些信息,可以揭示因果关系背后的逻辑规律,提高因果推理系统的可解释性和稳定性。为此,作者们提出了一个事件图知识增强的可解释因果推理框架(ExCAR)。ExCAR首先从大规模的因果事件图中获取额外的证据信息,作为因果推理的逻辑规则。为了学习逻辑规则的条件概率,作者们提出了条件马尔可夫神经逻辑网络(CMNLN),它以端到端可微的方式结合了逻辑规则的表示学习和结构学习。实验结果表明,ExCAR的性能优于以往的SOTA方法。对抗性攻击评估显示ExCAR的稳定性优于基线系统。人工评估结果表明,ExCAR具有良好的可解释性能

亮点

ExCAR的亮点主要包括:

1.提出了一个事件图知识增强的可解释因果推理(ExCAR)框架充分利用证据信

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值