
笔记整理:朱珈徵,天津大学硕士
链接:https://aclanthology.org/2021.acl-long.183.pdf
动机
因果推理旨在理解因果之间的一般因果相关性,对于各种人工智能应用都有很大的价值。先前的研究主要是基于从手工注释的因果事件对中归纳出的知识来推断事件之间的因果关系。然而,关于因果关系的更多证据信息仍未被利用。通过整合这些信息,可以揭示因果关系背后的逻辑规律,提高因果推理系统的可解释性和稳定性。为此,作者们提出了一个事件图知识增强的可解释因果推理框架(ExCAR)。ExCAR首先从大规模的因果事件图中获取额外的证据信息,作为因果推理的逻辑规则。为了学习逻辑规则的条件概率,作者们提出了条件马尔可夫神经逻辑网络(CMNLN),它以端到端可微的方式结合了逻辑规则的表示学习和结构学习。实验结果表明,ExCAR的性能优于以往的SOTA方法。对抗性攻击评估显示ExCAR的稳定性优于基线系统。人工评估结果表明,ExCAR具有良好的可解释性能
亮点
ExCAR的亮点主要包括:
1.提出了一个事件图知识增强的可解释因果推理(ExCAR)框架充分利用证据信

最低0.47元/天 解锁文章
747

被折叠的 条评论
为什么被折叠?



