新KG视点 | 白硕—大模型时代的知识图谱

大模型和知识图谱在人工智能领域互补,前者擅长语言理解和生成,后者擅长知识表示。白硕认为,大模型无法完全替代知识图谱,尤其是在深度计算和推理任务上。知识图谱在特定场景下仍具有优势,可以与大模型形成插件联盟,共同推进语控万物的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenKG

71a6ec70aaf0ea9a439a22efec720a69.png

大模型专辑

导读 知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。在这一背景下,OpenKG组织新KG视点系列文章——“大模型专辑”,不定期邀请业内专家对知识图谱与大模型的融合之道展开深入探讨。本期特别邀请到恒生电子研究院院长白硕分享“大模型时代的知识图谱”,本文整理自白硕老师在中国计算机学会CCF Talk上的分享。

分享嘉宾 | 白硕 恒生电子研究院院长

笔记整理 | 邓鸿杰

内容审定 | 陈华钧


914e95791a8fceec72632a142963f345.png

01

大模型发展路线

260c13414e72cdbac5858c05e7cacfff.png

众所周知,大模型这个话题从去年十一月份以来都是比较热,它的出现实际上是代表了通用人工智能的一个重大的突破,也是自然语言理解或者自然语言处理领域一个重大的突破。但这个重大的突破比我们预想来得要早一些,它发生的这个部位也跟很多人的预测不太一致。那么众所周知,大模型是起源于transform这样一项技术,这个技术实际上是分成了两派,一派是以谷歌为代表,就是我们看到的下面走的一条路,bert可能很多人都熟悉。还有一派是上面这条路,这个是以openai公司为代表,他们做出来的东西是GPT系列。可能很多人都把这个关注点放在谷歌这样一条线上,都期待他们会先突破。但是实际的情况是openai这条线率先出现了这么一个突破,或者说产生了这个涌现的这样一个现象,这就是大家熟知的一个目前都在用的大模型。那么这两条技术路线有什么分别呢?GPT这条路线,它是一个从左到右生成的一个路线,可以叫词语接龙。底下是以谷歌为代表的这样一个路线,它是一个双向的路线,可以叫做完形填空,就是说中间是空的,然后从左右两边去逼近它,去猜测这个中间是什么。这两种模型都是需要使用巨大的算力来做的。

f018fad15c35b6716d0286d7c8e54b52.png

我们简单举个例子看看接龙模型是什么样的,比如说:“如何开通”有个空白,那后边可能是股票或者账户当中的某一个字。然后再看那个填空的模型,那比如说:上海一个空交易所,那中间可能有证券、可能有期货、可能有黄金、可能有大数据等等,那么这些他们有不同的概率分布。这是大家看到的比较短的上下文。如果是很长的上下文,有很多的词语存在,这些词语都有可能对这个“空白处”的内容产生影响,那就需要去判断这些词语对“空白处”的影响大概是多少。

02

重大突破

f87db35a66ccc45e10937b8881eb0ffe.png

那它实现了哪些突破呢?我们从学术上看、从自然语言理解的这个本身的难点上看,它出现了两个重大的突破。第一个突破就是远距离的关联。远距离关联说起来就是一个我现在要预测的词,可能跟之前第n个词是有关联的,而这个关联如果不把握住的话,你就没有办法去做预测,所以你要先去预测前面的。但前面的这个窗口开的越长,需要的算力就越大,要捕捉正确的那个能影响到现在需要预测的词语 也就越难。实际上用蛮力去解决这个问题还是需要一个精巧的模型。那么这个模型就是transform attention这样一套东西,所以是解决了这个问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值